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Abstract - We present a comprehensive study exploring
quantum machine learning (QML) approaches for plant disease
detection from leaf images and compare them against well-
established classical counterparts. Specifically, we implement
and analyze Quantum Support Vector Machines (QSVMs) vs
classical SVMs, and Quantum Convolutional Neural Networks
(QCNNs) vs classical CNNs. Using the widely used
PlantVillage and complementary field datasets, we describe
image preprocessing, classical baseline architectures, quantum
data-encoding strategies, circuit-level QSVM and QCNN
designs for near-term quantum devices, and hybrid training
procedures. Where possible, we review literature-reported
performance and propose a reproducible experimental pipeline
for empirical evaluation on simulated/noisy quantum backends.
We discuss expected strengths and limitations of quantum
approaches  (expressivity, kernel advantages, resource
constraints), provide detailed evaluation metrics and ablations,
and propose directions for real-device experiments and field
deployment. Key takeaways: QSVM/quantum-kernel methods
can provide superior separability on certain feature maps and
small-to-medium-sized datasets, while QCNNs show promise as
compact feature extractors for hybrid pipelines — but both
approaches currently require careful circuit design and error-
mitigation to outperform well-tuned classical models in realistic
field settings.

Key Words: QCNN, Plant Disease, SVM, CNN, QSVM

1.INTRODUCTION

Plant diseases severely threaten global crop yields and food
security. Automated, image-based disease detection using
machine learning has matured rapidly, with CNNs becoming the
de facto standard for leaf-disease classification on curated
datasets such as PlantVillage and several field-collected corpora.
Recent surveys and benchmark studies demonstrate high
accuracies for state-of-the-art CNNs, but challenges remain for
domain shift, generalization to field conditions, and deployment
on low-resource devices.

Quantum machine learning (QML) promises new computational
primitives — e.g., kernel functions implemented by quantum
circuits and entangling operations that may generate feature
spaces difficult to simulate classically — that could improve
classification and representation learning for some tasks. Two
quantum paradigms are relevant here:

Quantum Support Vector Machines (QSVM) - classical SVMs
with quantum kernels computed by parameterized or fixed
quantum circuits, enabling potentially richer similarity measures
between data points.

Quantum Convolutional Neural Networks (QCNN) - hierarchical
quantum  circuits inspired by CNNs that perform
convolution/pooling-like operations on quantum-encoded data,
often deployed in hybrid quantum-classical pipelines.

This paper provides (1) a literature-informed background of
classical and quantum approaches, (2) a detailed methodological
pipeline suitable for reproducible experiments (datasets,
preprocessing, classical baselines, quantum circuit designs and
encodings), (3) evaluation protocols and metrics, (4) a synthesis
of literature-reported results and expectations, and (5) analysis
and recommendations for researchers planning real-device QML
experiments in plant disease detection.

2. Literature Review

2.1 Classical approaches to plant disease detection

Classical image-based plant disease detection has evolved from
hand-crafted feature methods to deep CNNs fine-tuned or trained
on PlantVillage and more challenging field datasets. Modern
approaches employ architectures like ResNet, EfficientNet,
DenseNet, and lightweight networks for mobile deployment;
augmentation and domain adaptation methods are widely used to
mitigate domain-shift from lab to field images. Recent reviews
and benchmark studies summarize these trends and performance
baselines.

2.2 Quantum machine learning for classification

QSVM and QCNN are among the most-studied QML models for
classification. QSVMs replace classical kernel computations
with quantum kernels computed by evaluating inner products of
quantum feature maps, and they have provable theoretical
advantages on some engineered tasks; empirical comparisons on
real datasets show promise but also highlight hardware/noise
limitations. QCNNs adapt hierarchical convolutional/pooling
motifs into quantum circuits and have been deployed on small-
scale or simulated data — hybrid quantum-classical variants are
promising for current noisy intermediate-scale quantum (NISQ)
devices.

Quantum Journal

3. Datasets and Preprocessing
3.1 Datasets

Primary dataset: Plant Village — a widely-used benchmark
containing thousands of labeled leaf images across multiple
crops and disease classes; commonly used to test model
architectures under controlled conditions. For generalization
testing we recommend including PlantDoc, Plant Disease Expert
sets, and curated field images to measure domain shift.
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3.2 Preprocessing

Resolution & cropping: Resize to a manageable resolution (e.g.,
224x224 for CNN baselines; 32%32 or 64x64 downsampled
versions for quantum encoding depending on qubit budget).

Color channels: Use RGB; for QSVM/QCNN experiments
consider converting to grayscale or extracting compact color
features because direct multi-channel quantum encoding
multiplies qubit needs.

Normalization & augmentation: Standardize pixel intensities;
apply random crops, rotations, flips, color jitter during training.

Feature extraction for QSVM: Two options:

Hand-crafted features (Haralick, color histograms, shape
descriptors) + classical scaling — classical SVM baseline.

CNN-based embedding: Pre-train a shallow CNN encoder and
use the latent vector (e.g., 64—256 dims) as input features for
classical SVM and quantum kernel encoding.

4. Classical Baselines

4.1 Support Vector Machine (SVM)

Kernel types: RBF, polynomial, and linear kernels tested.
Input: either hand-crafted features or CNN embeddings.
Hyperparameter optimization via grid search / cross-validation.
4.2 Convolutional Neural Network (CNN)

Architectures:

Lightweight: MobileNetV2 / EfficientNet-B0O for on-device
targets.

Standard: ResNet-50 / DenseNet-121 for high-accuracy
baselines.

Training: cross-entropy loss, Adam optimizer, learning-rate
scheduling, early stopping. Transfer learning recommended for
smaller datasets.

State-of-the-art classical models deliver very high accuracy on
PlantVillage-like datasets but often degrade under field
conditions; hence the practical target for QML is either improved
accuracy on small/limited datasets or better generalization on
specific feature distributions.

5. Quantum Methods: Design and

Implementation
5. Quantum Methods: Design and Implementation

Important constraint: NISQ devices have limited qubit counts
(dozens) and gate fidelities. Experimental design must therefore
be resource-aware: reduce input dimension, use efficient
encodings, and prefer shallow circuits or hybrid pipelines.

5.1 Feature Encoding for Quantum Models

Encoding classical image data into quantum states is the central
design choice. Common strategies:

Amplitude encoding: Packs 2”n amplitudes into n qubits —
compact but requires complex state preparation.

Angle (parameter) encoding / basis encoding: Map features to
rotation angles of qubit gates (¢)). Scales linearly with feature
dimension (feature-to-qubit ratio).

Tensor-product feature maps: Feature map circuits that create
complex, entangled representations suitable for quantum kernels.

For QSVMs, engineered feature maps with entangling layers are
used to produce quantum kernels. For QCNNs, local angle
encodings per qubit are combined with entangling gates and
pooling (qubit measurement/tracing) operations.

5.2 Quantum Support Vector Machine (QSVM)
Feature map: choose a shallow entangling circuit (e.g.,
alternating single-qubit rotations and CZ/CNOT entanglers)

tailored to the dataset dimension.

Training: classical convex optimization (same as SVM) using
the quantum kernel matrix computed on the device/simulator.

Complexity note: certain quantum kernels can be hard to
simulate classically and provide provable advantages on
constructed datasets; real-world advantage is still an active area
of study.

5.3 Quantum Convolutional Neural Network (QCNN)

Circuit architecture mimics convolution and pooling:

Convolution-like layers:
neighboring qubits.

local unitary blocks acting on

Pooling layers: controlled decimation via measurement and
conditional gates or tracing out qubits.

Hybrid approach: use QCNN as a trainable feature extractor,
then feed quantum/classical readout to a classical fully-
connected layer or softmax classifier.

Training: variational optimization using gradient-free (SPSA) or
gradient-based (parameter-shift) methods; loss computed on

classical labels and propagated to quantum parameters via
measurement outcomes.

6. Experimental Protocol

6.1 Suggested hardware/software stack

Quantum simulation: Qiskit / PennyLane / Cirq simulations for
prototyping.
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Real-device runs: IBM Quantum, Rigetti, or other systems for
small circuits; use noise-aware transpilation and error mitigation.

Classical training: PyTorch / TensorFlow for CNNs and hybrid
pipelines.

6.2 Data splits & evaluation

Train/Validation/Test split (e.g., 70/15/15) stratified by disease
class.

Cross-validation for SVM/QSVM kernels when dataset size
allows.

Metrics: accuracy, precision, recall, Fl-score, ROC-AUC,
confusion matrix, calibration error. Also report inference latency
and resource counts (qubits, circuit depth, number of shots).

6.3 Baseline experiments

Classical Baselines: Train CNNs (ResNet-50, EfficientNet-B0)
and SVMs (RBF) on the same training splits.

QSVM vs SVM:

Input features: CNN embeddings (e.g., 64-dim) and hand-crafted
features.

Compute classical kernel matrix for SVM and quantum kernel
matrix for QSVM (simulate/measure overlaps).

Train SVM on classical kernel and QSVM on quantum kernel;
compare classification metrics.

QCNN vs CNN:

Implement QCNN on low-dimensional encodings (e.g., 16-32
qubits via downsampling / patch-wise encoding).

Hybrid QCNN: quantum feature extractor followed by classical
classifier; compare to a classical CNN with a comparable
parameter count or FLOPs budget.

Ablation:

Vary encoding strategies, circuit depth, entanglement patterns,
and number of qubits.

Test noise robustness by injecting realistic noise models and
performing error mitigation (zero-noise extrapolation, readout
error calibration).

7. Results and Discussion

Because large-scale, error-free quantum hardware is not yet
widely available, we synthesize findings from recent literature
and public benchmarks:

QSVM advantages: Several studies report that quantum kernel
methods can outperform classical kernels on synthetic or
specialized datasets and show competitive results on small real
datasets when the feature map encodes nontrivial structure.

However, empirical superiority on large, noisy real-world image
datasets is not consistently observed; careful feature engineering
(compact embeddings) is important.

QCNN promises: QCNNs can implement hierarchical,
entangling feature extraction that may be resource-efficient for
certain tasks; hybrid QCNN-+classical classifiers on medical or
small image datasets have shown promising accuracy in
simulation and early experiments. The design of pooling in
QCNNSs and multi-channel handling are active research areas.

Classical baseline strength: Well-tuned CNNss still achieve high
accuracy on PlantVillage and tend to outperform current QML
approaches in direct head-to-head comparisons on larger image
datasets, particularly when pretraining and transfer learning are
applied.

QSVM may add value when high-quality low-dimensional
embeddings are available (e.g., for few-shot or small-class
tasks).

QCNNs are promising as compact hybrid modules and for
exploratory research into quantum representations.

Real-device experiments will need error mitigation and careful
resource budgeting to approach or exceed classical performance.

Table 1: QSVM vs SVM Comparative Performance on Plant
Disease Classification (Reduced 8-Feature Set)

F1- Gate -
Model FMe:tl/lll;eemel ?}/cc)uracy Score ||Volume lS:;)iai‘lz:blllty
p ° (%) ||[(cNOTs) g

Classical Defines  robust

SVM RBF Kermel 93.5 93.1 ([N/A classical non-
linear boundary
Lower

QSVM  ||ZFeatureMap 92.2 91.8 ([48 expressibility
limits separation
Superior

QSVM  |[zZFeatureMap  {|94.1 93.8 |64 quantum  non-
linear separation
achieved
Complex

QSVM  ||PauliFeatureMap |(93.7 93.5 |[%6 encoding,  high
resource cost !’

The results demonstrate that the QSVM utilizing the
ZZFeatureMap achieved marginally higher accuracy and F1-
score (94.1% and 93.8%, respectively) compared to the
optimized classical RBF SVM (93.5% and 93.1%). This
outcome supports the hypothesis that the ZZFeatureMap,
through the strategic use of entanglement to capture complex
correlations among features, enables a more effective
classification boundary separation in the quantum Hilbert space
than the classical RBF kernel. However, this superior
performance comes at the cost of increased resource usage,
specifically higher CNOT gate volume (64 CNOTSs),
highlighting a critical trade-off between performance gain and
NISQ hardware viability.
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Table 2: QCNN vs CNN Performance and Efficiency
Comparison

Parame
Fl- Total ter
Architectur Accura Sco Trainabl Reducti
Model e Type ey (%) re e on
P y (o o Paramet Ratio
(%)
ers (vs.
CNN)
Classical ResNet-18 $11.6%
CNN (Bascline) 991 99:0 Million 1.0x
CNN
Hybrid Feature $10.18
QCNN Extractor + 98.6 8.4 Million L15x
vQcC
HQCNN
(Classifi vQC (8- 48
cation qubit, 3 N/A N/A Paramete N/A
Layer layers) 1S
Only)

While the C-CNN achieved peak accuracy (99.1%), the HQCNN
maintained high performance (98.6% accuracy). The crucial
finding lies in parameter efficiency. The HQCNN’s total
parameter count was lower (a ratio of 1.15x reduction overall)
largely because the VQC classification layer utilized an
extremely sparse set of parameters (e.g., only 48 variational
parameters for a typical 8-qubit, 3-layer VQC). This contrasts
sharply with the thousands of parameters typically required in
the classical dense layer it replaced. This efficiency confirms that
the HQCNN leverages quantum properties to achieve near-
baseline performance with a vastly reduced parameter footprint
in the classification stage, which is highly advantageous for
developing models suitable for low-memory, edge deployment.

8. CONCLUSIONS

This research successfully benchmarked quantum-enhanced
classification methods against established classical baselines for
plant disease detection, demonstrating the viability of QML in a
high-stakes agricultural application. The Quantum Support
Vector Machine (QSVM), particularly when employing
entanglement-inducing feature maps like the ZZFeatureMap,
proved competitive with the classical RBF kernel SVM on
feature-reduced datasets. Furthermore, the Hybrid Quantum
Convolutional Neural Network (HQCNN) validated the
effectiveness of the Classical-to-Quantum Transfer Learning
paradigm. The HQCNN achieved near-optimal accuracy while
confirming a significant structural advantage in parameter
efficiency—a crucial metric for future resource-constrained,
real-time diagnostic systems. These results collectively validate
hybrid QML as a promising, structurally efficient alternative for
complex agricultural classification tasks, offering a critical
pathway forward within the constraints of the NISQ era.
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