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ABSTRACT

The vision of Industry 4.0 is predicated on the seamless integration of advanced Artificial Intelligence and Machine
Learning (AI/ML) models into the very fabric of industrial operations, enabling autonomous, self-optimizing, and resilient
Cyber-Physical Systems (CPS). From predictive maintenance to real-time quality control and robotic process automation,
the adoption of these complex models promises unprecedented efficiency and capability. However, this transformative
potential is fundamentally constrained by the pervasive opacity of high-performance "black-box" models, such as deep
neural networks and sophisticated ensembles. This opacity erodes human trust, complicates regulatory compliance, and
presents a significant barrier to effective human-machine collaboration in safety-critical and economically consequential
environments. While the field of Explainable Al (XAI) has emerged to provide post-hoc transparency through methods
like SHAP and LIME, these techniques are inherently limited. They are often computationally prohibitive for real-time
industrial applications, generate static and uniform explanations irrespective of context or user, and fail to provide the
nuanced, actionable insights required for industrial decision-making. This paper introduces RAISE (Reinforcement-
Augmented Interpretable Structured Explanations), a novel and comprehensive XAl framework designed to overcome
these limitations. RAISE reconceptualizes explanation generation as a dynamic, context-sensitive sequential decision-
making problem. At its core, a lightweight Proximal Policy Optimization (PPO) agent, trained on a multi-fidelity reward
function, dynamically selects the optimal explanation strategy from a diverse portfolio—including contrastive, causal,
feature-importance, and counterfactual methods—tailored to the specific data instance, the underlying model's state, and
the immediate operational context. This adaptive mechanism ensures that the explanation provided is not only faithful to
the original model but also maximally interpretable and useful for the human stakeholder, whether they are a machine
operator, a maintenance engineer, or a system designer. We present a complete formalization of the problem as a Markov
Decision Process (MDP), detailing the architecture and training protocol. A rigorous experimental evaluation on
established industrial datasets demonstrates that RAISE achieves a statistically significant 22.7% improvement in human-
rated interpretability scores over state-of-the-art static baselines while maintaining 98.3% fidelity. Furthermore, RAISE
reduces average explanation latency by 34.1%, proving its viability for real-time, edge-based deployment. By providing
a pathway toward trustworthy, efficient, and human-centric XAl, the RAISE framework directly addresses critical
research gaps in Industry 4.0, particularly in the domains of scalable human-Al teaming and the responsible deployment
of Al in complex, dynamic industrial ecosystems.

INDEX TERMS: Explainable Artificial Intelligence (XAI), Reinforcement Learning, Industry 4.0, Human-in-the-Loop
Al, Adaptive Systems, Cyber-Physical Systems, Trustworthy Al, Predictive Maintenance, Context-Aware Computing.

I. INTRODUCTION

The advent of the fourth industrial revolution, widely termed Industry 4.0, heralds a new era of manufacturing and
industrial processes characterized by a profound fusion of digital, physical, and biological systems. This paradigm shift is
powered by the deep integration of Cyber-Physical Systems (CPS), the expansive connectivity of the Industrial Internet
of Things (IIoT), and the analytical prowess of cloud and edge computing. Central to this vision is the deployment of
sophisticated data-driven Artificial Intelligence and Machine Learning models, which are increasingly entrusted with
critical operational functions. These models are deployed for predictive maintenance, forecasting equipment failures by
analyzing multivariate sensor telemetry; for visual quality inspection, detecting microscopic defects with superhuman
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accuracy; for dynamic supply chain optimization; and for the autonomous control of complex robotic assemblies. The
promise of Industry 4.0 is one of smart factories that are not only more efficient and productive but also more flexible,
resilient, and sustainable.

However, the very tools that enable this smartness—complex Al models like deep neural networks, gradient boosting
machines, and large ensembles—present a formidable paradox. Their superior predictive performance often comes at the
cost of interpretability, creating what is commonly referred to as the "black-box" problem. The internal decision-making
logic of these models is opaque, even to their designers, making it difficult to understand why a particular prediction or
decision was made. This lack of transparency is not merely an academic concern; it poses a substantial and multifaceted
risk to industrial adoption. In environments where decisions directly impact worker safety, involve multimillion-dollar
assets, or determine production continuity, the inability to scrutinize and justify an Al's output fundamentally erodes trust
among the human operators, engineers, and managers who must act upon its recommendations. This trust deficit is
exacerbated by a growing regulatory landscape, exemplified by the European Union's Artificial Intelligence Act, which
mandates transparency and accountability for high-risk Al systems. Furthermore, when a model makes an error or its
performance degrades over time due to data drift, the opacity of the black box severely hinders debugging, root-cause
analysis, and effective model lifecycle management. Without understanding the cause of a failure, engineers cannot
reliably determine whether the fault lies with a faulty sensor, an unforeseen operational condition, or a fundamental flaw
in the model itself.

In response to these critical challenges, the interdisciplinary field of Explainable Al has rapidly evolved, aiming to develop
techniques and methodologies that make Al systems more transparent, comprehensible, and trustworthy to human users.
Contemporary XAl approaches can be broadly categorized. Intrinsically interpretable models, such as linear models or
decision trees, offer transparency by design but are typically incapable of capturing the complex, non-linear relationships
present in high-dimensional industrial data, leading to a significant trade-off between interpretability and predictive power.
Post-hoc explanation techniques, which are applied after a complex model has been trained, seek to elucidate its behavior.
Notable examples include SHAP, which attributes the prediction to each input feature based on cooperative game theory,
and LIME, which approximates the model locally with an interpretable surrogate. While these methods have proven
valuable for offline model analysis and validation, they suffer from significant limitations in dynamic industrial settings.
They are often computationally intensive, making real-time explanation generation for streaming [loT data impractical.
More fundamentally, they are static and monolithic; a SHAP explanation provides a uniform vector of feature attributions
regardless of whether the consumer is a seasoned data scientist or a frontline technician, and irrespective of whether the
prediction is a routine, high-confidence output or a surprising, low-confidence anomaly.

This static nature of current XAl methods overlooks a fundamental principle of effective communication, well-established
in cognitive science and human-computer interaction: explanation is a communicative act that must be tailored to the
audience, the context, and the purpose of the inquiry. An effective explanation for a control room operator during a critical
alarm is fundamentally different from one needed by a design engineer auditing a model's fairness. The former requires
immediacy, clarity, and a direct link to actionable parameters, while the latter may demand technical depth, robustness,
and auditability. The failure of existing XAl to embody this adaptability represents a major impediment to their practical
utility in the heterogeneous and dynamic ecosystem of Industry 4.0. This gap points to an urgent research imperative: the
development of adaptive, context-aware XAl systems that can dynamically select, generate, and present explanations
optimized for the specific situation, stakeholder, and objective at hand.

To address this imperative, we propose the RAISE framework. Our foundational premise is that the generation of an
optimal explanation is not a deterministic translation from model output to human-readable text but rather a sequential
decision-making problem under uncertainty. The most appropriate type of explanation for a given scenario depends on a
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complex state that encompasses the characteristics of the input data instance, the confidence and uncertainty metrics of
the model's prediction, the historical sequence of previous interactions, and rich contextual metadata about the operational
domain and the intended user. Reinforcement Learning, a machine learning paradigm concerned with how software agents
ought to take actions in an environment to maximize cumulative reward, is uniquely suited to learn optimal policies in
such multi-dimensional, context-dependent decision spaces. RAISE operationalizes this insight by integrating a
lightweight RL agent as an intelligent orchestrator within the XAl pipeline. This agent is trained to continuously evaluate
the current state and select the most suitable explanation strategy from a diverse portfolio, dynamically balancing a suite
of competing objectives that include fidelity to the original black-box model, perceived human interpretability,
conciseness, and the computational cost of generation.

The contributions of this work are comprehensive and multifaceted. First, we introduce the complete RAISE framework,
detailing its novel modular architecture specifically engineered for integration into industrial Al pipelines. Second, we
provide a rigorous formalization of the adaptive explanation problem as a Markov Decision Process, explicitly defining
the state space, action space, and a sophisticated multi-fidelity reward function that encapsulates the essential trade-offs
for industrial deployment. Third, we present an extensive empirical evaluation of RAISE against leading XAl baselines,
employing both quantitative metrics and human-subject studies on real-world industrial datasets to validate its
performance advantages in fidelity, interpretability, and efficiency. Fourth, we articulate a detailed discussion on the
profound implications of RAISE for Industry 4.0, illustrating how it directly tackles core research challenges related to
human-Al teaming, scalable and real-time Al transparency, and robust Al system governance. Through this work, we aim
to provide both a theoretical advancement and a practical toolkit for building more trustworthy, collaborative, and effective
intelligent systems for the future of industry.

II. RELATED WORK

The development of the RAISE framework is situated at the confluence of several active and interdependent research
streams: the application of Explainable Al techniques to industrial problems, the growing emphasis on human-centered
and adaptive XAl, and the emerging use of Reinforcement Learning for explanation-related tasks. A thorough review of
these areas is essential to position our contribution within the existing academic landscape and to clarify the specific gap
that RAISE is designed to fill.

The integration of XAl into Industry 4.0 applications has been a subject of intense investigation, driven by the practical
need to understand complex models in high-stakes environments. A significant portion of this research has focused on
applying established post-hoc methods to domain-specific problems, thereby validating their utility and uncovering
domain-specific challenges. For instance, in the critical area of predictive maintenance, researchers have extensively
utilized SHAP values to interpret the predictions of models forecasting the Remaining Useful Life of industrial assets.
These studies successfully identify which sensor readings—yvibration, temperature, pressure—are most salient for failure
prediction, providing engineers with actionable insights for condition monitoring. Similarly, in visual quality inspection,
techniques like Grad-CAM and other visual attribution methods have been deployed to highlight the regions of an image
that most influenced a convolutional neural network's defect classification, offering a form of visual justification that can
be compared to human inspection protocols. This body of applied work has been invaluable, not only demonstrating the
feasibility of XAl in industry but also surfacing the unique constraints of the domain. Scholars have meticulously
documented the challenges posed by the volume, velocity, and veracity of industrial IoT data, the stringent latency
requirements for real-time decision support, and the complexity of generating coherent explanations from heterogeneous,
multi-modal data streams that fuse numerical sensor readings with categorical logs and visual feeds. Despite these
advancements, a prevalent pattern in this applied literature is the use of XAl tools in a static, one-size-fits-all manner. The
explanation method is typically selected a priori by the system designer and applied uniformly, with little to no capacity
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for runtime adaptation based on the nuance of the individual prediction or the profile of the user consuming the
explanation. This static application fails to address the variability inherent in industrial contexts, a limitation that recent
surveys and position papers have begun to explicitly identify as a critical barrier to wider adoption.

Concurrently, within the broader XAl community, there has been a pronounced shift toward a more human-centered
perspective, informed by disciplines such as cognitive psychology, social science, and human-computer interaction. This
perspective asserts that the effectiveness of an explanation is not an intrinsic property of the algorithm but is instead co-
determined by the cognitive state, goals, and expertise of the human recipient. Research in this vein has pursued the
development of user-adaptive systems. Some frameworks propose models of user traits—such as domain expertise,
familiarity with ML concepts, or immediate task goals—and use these models to tailor the content, complexity, and
presentation format of explanations. Other innovative lines of work explore interactive and dialogical paradigms, moving
beyond a single, monolithic explanation. These approaches envision XAl as a conversation, where users can ask follow-
up questions, request clarifications on specific aspects, or challenge the system's reasoning, thereby engaging in an
iterative sense-making process. While these human-centered approaches provide a crucial philosophical and design
foundation for adaptive XAl they often remain at a conceptual or prototype stage. A significant implementation gap exists
between these adaptive principles and the creation of robust, scalable systems that can be deployed in production industrial
environments. Furthermore, many proposed adaptive systems rely on hand-crafted rules or simple heuristic switches to
select explanations, lacking a general, learnable optimization mechanism that can automatically discover the optimal
mapping from a rich context space to an explanation strategy.

The application of Reinforcement Learning to problems within XAl is a relatively nascent but highly promising area of
research. Initial forays have employed RL to address specific sub-problems in the explanation pipeline. Some studies have
framed the selection of relevant features for a local explanation as an RL task, where an agent learns to identify a minimal
yet maximally informative subset of features to present, optimizing for user comprehension. Others have used RL to
generate sequential visual explanations, guiding a user's attention through a series of focal points in an image or a time-
series to build understanding incrementally. Work more directly related to RAISE explores using RL to learn how to
explain. One approach trained an agent to produce explanations that mimic the output of SHAP but through a more
efficient, learned process. Another conceptually aligned study utilized a Multi-Armed Bandit, a simplified RL model, to
adaptively choose between presenting a simple or a detailed explanation based on implicit feedback signals from user
interaction patterns. RAISE is conceived as a substantial extension and synthesis of these ideas. We employ a full deep
reinforcement learning policy network, enabling the learning of complex, non-linear policies from a high-dimensional
state representation that encodes data, model, and context. Our action space is not a binary choice between simple and
complex but a diverse portfolio of fundamentally different explanation strategies, each with its own cognitive affordances.
Most critically, we introduce and optimize a composite reward function that explicitly and simultaneously balances the
multi-objective trade-offs—between fidelity, interpretability, conciseness, and computational cost—that are paramount
for practical utility in resource-constrained, time-sensitive industrial settings, advancing beyond optimization for imitation
or singular feedback signals.

A synthesis of these research trajectories reveals a distinct and consequential gap. Current industrial XAl applications
offer high fidelity at high computational cost without adaptability, while human-centered XAI research proposes
adaptability but often lacks integration with robust, efficient explanation techniques and learnable optimization. RAISE
is designed explicitly to bridge this gap. It proposes a unified framework where a learned RL policy dynamically navigates
the trade-off space, making real-time decisions to select an explanation strategy that provides the right balance of
properties for the specific situational context. By doing so, it offers a path toward XAl that is not only technically sound
and efficient but also genuinely responsive to the needs of human stakeholders in complex industrial workflows.
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III. THE RAISE FRAMEWORK

The RAISE framework is architected as a modular and extensible software layer designed to be seamlessly integrated into
existing industrial Al inference pipelines. It operates as an intelligent intermediary, sitting between a pre-trained,
potentially opaque "black-box" machine learning model and the human users or downstream automated systems that
require justification for the model's predictions. The core innovation of RAISE is the deployment of a Reinforcement
Learning agent that functions as a dynamic explanation orchestrator. This agent does not generate explanations directly
but instead learns to select the most appropriate explanation-generation strategy from a predefined portfolio based on a
comprehensive assessment of the current system state. This design philosophy ensures that the framework is model-
agnostic, can evolve with the addition of new explanation techniques, and can be optimized for the specific operational
constraints and human factors of a given industrial deployment.

The theoretical foundation of RAISE is the formalization of the adaptive explanation problem as a Markov Decision
Process. An MDP provides a mathematical framework for modeling sequential decision-making under uncertainty,
defined by the tuple (S, A, P, R, y), representing states, actions, transition probabilities, rewards, and a discount factor,
respectively. Within RAISE, the state space S is meticulously constructed to capture all information deemed relevant for
making an optimal explanation decision. A state vector s_t at time t is a concatenation of several feature groups. The first
group encapsulates the characteristics of the current data instance, including statistical summaries like mean, variance,
and an anomaly score, which signal whether the input is typical or an outlier. The second group represents the state of the
black-box model itself, primarily its uncertainty, quantified through metrics such as prediction entropy or the softmax
probability of the winning class, indicating the model's confidence in its own output. The third group incorporates a short-
term memory of explanation history, tracking the strategies used in recent interactions to enable the agent to promote
diversity and avoid monotonous or repetitive explanations. The fourth and perhaps most critical group is the context tag,
a structured encoding of the operational environment. This tag can include the application domain, the presumed role and
expertise level of the human consumer, the criticality of the decision, and other meta-information that shapes the desiderata
for a good explanation. This rich state representation allows the agent to develop a nuanced policy that responds to a wide
array of situational variables.

The action space A of the MDP is a discrete set of K available explanation strategies. In our implementation, K is set to
four, encompassing a diverse set of complementary XAl approaches. Action a_0 corresponds to a Contrastive Explanation
strategy, which focuses on explaining why the predicted class was chosen over the most plausible alternative class,
aligning with human counterfactual reasoning. Action a_1 is a Causal Chain Explanation strategy, which constructs a
narrative that links influential input features through an intermediate causal mechanism to the final outcome, providing a
storyline that is often intuitive for diagnosing faults. Action a_2 is a Feature Importance Explanation strategy, which
provides a ranked list or visual plot of the features that contributed most to the prediction, offering a clear, albeit static,
overview of key drivers. Action a_3 is a Counterfactual Explanation strategy, which generates one or more minimal,
realistic changes to the input instance that would result in a different prediction, effectively illustrating the "decision
boundary" of the model. Each strategy in this bank is implemented as an independent module with a standardized interface,
allowing for easy modification or extension. For instance, the Feature Importance module might employ a fast, sampling-
based approximation of Shapley values suitable for real-time use, while the Counterfactual module might use a gradient-
based or heuristic search algorithm.

The reward function R is the mechanism through which the desired behavior of the RAISE agent is shaped and optimized.
It is engineered as a weighted linear combination of multiple reward signals, each quantifying a different dimension of
explanation quality that is critical for industrial adoption. The fidelity reward R _fidelity measures how faithfully the
generated explanation reflects the reasoning of the original black-box model. It is computed by comparing the model's
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original prediction to the prediction of a simple, interpretable surrogate model trained on the local neighborhood or logic
used to construct the explanation. A high reward is given when these predictions align closely. The interpretability reward
R _interpretability is a proxy for how easily a human can understand the explanation. In our experiments, this is
approximated using metrics like inverse syntactic complexity, feature familiarity, and coherence scores, though this
module is architecturally designed to accept explicit human feedback ratings in a deployed system. The conciseness
reward R_conciseness incentivizes brevity and clarity, penalizing overly verbose or cluttered explanations. Finally, the
computational cost penalty R computational cost discourages the selection of strategies that are too slow for the
operational context, measured directly as the latency of the explanation generation step. The weights assigned to each
component of this composite reward are tunable hyperparameters, enabling the system designer to calibrate the agent's
priorities. For example, in a safety-critical real-time control loop, the weight on computational cost might be increased,
while for an offline audit for regulatory compliance, the weight on fidelity might be paramount.

The system architecture that brings these MDP components to life follows a coherent data flow. When a prediction is
requested from the black-box model, the RAISE framework is invoked. The State Constructor module first aggregates all
necessary inputs—the raw data instance, the model's prediction and confidence scores, the current context tag, and the
recent history from a memory buffer—and compiles them into the standardized state vector s_t. This state is then passed
as input to the RL Agent, which in our implementation uses a Proximal Policy Optimization algorithm. The agent's policy
network, typically a multilayer perceptron, processes the state and outputs a probability distribution over the K explanation
strategies. An action a_t is sampled from this distribution (or the argmax is taken during deployment). This action index
is used to dispatch the request to the corresponding module within the Explanation Strategy Bank. The selected strategy
executes, generating the final explanation in an appropriate format (e.g., natural language sentence, annotated plot, or data
structure). Concurrently, the Reward Calculator module evaluates the quality of this generated explanation by computing
the multi-component reward r_t. This reward signal, along with the state and action, forms an experience tuple that is
stored for later use in updating the agent's policy, creating a continuous learning loop. The training of the RAISE agent
typically occurs in a simulated or offline environment using historical data before deployment. The PPO algorithm
leverages collected experience trajectories to adjust the policy network parameters to maximize the expected cumulative
discounted reward. For stability, training can be warm-started using behavior cloning on any existing logs of explanation
preferences. Once trained, the policy network is deployed and operates in inference mode, providing fast, adaptive
explanation strategy selection for live industrial Al systems.

IV. EXPERIMENTAL EVALUATION

To empirically validate the efficacy and practical utility of the RAISE framework, we conducted a comprehensive suite
of experiments designed to reflect realistic industrial scenarios and provide rigorous comparisons against established XAl
benchmarks. The experimental design was guided by the need to assess performance across the multiple, competing
objectives that define a useful industrial XAI system: faithfulness to the original model, human interpretability, and
computational efficiency.

The experimental setup was constructed using three distinct datasets that embody common Industry 4.0 challenges. The
Al4l 2020 Predictive Maintenance Dataset provided a multivariate time-series-like environment with sensor readings
from industrial machinery, where the task is a binary classification of machine failure. The SECOM Semiconductor
Manufacturing Dataset offered a high-dimensional setting with hundreds of signals from a complex manufacturing process
and a pass/fail label, representing a classic quality control problem with imbalanced classes. Additionally, a synthetic
multi-modal sensor dataset was generated to simulate the data from an assembly line robot, blending continuous sensor
values with discrete operational codes, thereby testing the framework's ability to handle heterogeneous data types. For
each dataset, we trained two types of high-performance "black-box" models known for their predictive power and opacity:
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a Random Forest classifier with 100 trees and a 3-layer Dense Neural Network. Both models achieved high accuracy
(>92%) on their respective tasks, ensuring that the explanations were being generated for competent models representative
of those used in production.

RAISE was evaluated against three strong baselines to isolate the benefits of its adaptive, RL-driven approach. The first
baseline was SHAP (using the KernelExplainer), which represents the state-of-the-art in high-fidelity, model-agnostic
feature attribution, albeit with known computational costs. The second was LIME, a popular local approximation method
that is generally faster than SHAP but can produce less stable explanations. The third was a Static Random Selector, which
randomly chooses one of the four explanation strategies used by RAISE with uniform probability. This final baseline
serves as a crucial ablation, testing whether the intelligent selection learned by the RL agent provides value over a naive,
non-adaptive strategy. The RAISE agent itself was configured with a PPO policy network of two hidden layers (64 units
each) and was trained for 500 episodes. The weights in the composite reward function were set to w_=0.5, w_i=0.3,
w_c=0.1, w_d=0.1, reflecting a prioritization of fidelity and interpretability while still accounting for cost.

Performance was measured along three primary dimensions. Explanation Fidelity was quantified as one minus the Root
Mean Square Error between the black-box model's prediction probability and the prediction made by a simple surrogate
model (e.g., a linear model) trained on the synthetic neighborhood or logic explicitly used to generate the explanation.
This provides a direct measure of how well the explanation captures the local behavior of the original model. Human
Interpretability was assessed through a controlled user study involving 15 participants with backgrounds in industrial
engineering, data science, or factory operations. Each participant was presented with a series of predictions and
corresponding explanations from each method, blinded to their source, and asked to rate each explanation on a 5-point
Likert scale for clarity, usefulness, and actionability. The average of these scores formed the Human Interpretability Score
(HIS). Finally, Average Generation Latency was measured as the wall-clock time in milliseconds from the completion of
the black-box model's prediction to the delivery of a complete explanation, averaged over hundreds of trials, to assess
real-time viability.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7



7 Al N
3 1SIEM :’, International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
U2l Volume: 04 Issue: 12 | Dec - 2025 DOI: 10.55041/ISJEM05276

xﬂ% An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

RAISE Algorithm Performance Analysis

Tralning Rewards Qvar Time Strategy Selection Distribution Policy Loss Ovar Time
' A% 0o 7Y
w— | D NA on ar M
1009 /|
el ” ) will i
3§ os? . \ y
g A
£ 0350 8§ a0 fos I \ AN\ ) ’]|M./'l'
§4, E 5 J N ﬂ'\'d /1 IV |1
B yi~” |
§ cors V  Of g L
£ 200 LAl .
0500
ax{ |
0ars
e o n 0 « W ™)
£ ol t i Uptate Sep
o o § I P e
o & & of
5.4 P 4
& d
>
o
strategy
Feward Distribution by Strategy feature Importance |Samole instance) Explanation Confidence Distribution
12 s 2]
10 4 - N »
3 "o
5 oan rni -
3 e $
gne ! re 3
El : [
5 0¢ 2] T 30
H (&}
® 07 g
8 0
ne - ¥
W e . — JECHEECUS— T— T o .
Sl 5 < $3 000 oms o0 5 0100 12y 0150 2178 02 ol ol 08 10
ey Iportance SCove Conlgence Scove
Strategy Transiton Matrix RAISE Performance Metrics
10 =
P 230 - aan 691 fauTgre ErpAazannne
w o o
a L] 278 arn Poranoe | (82 Catt 23]
& oI — 1= W0 MpartANE Teatires F1 P 1 P10 IMOmanco soved 0 148 0155 019
o
3= pae 08 Fribarvce 7 150, O 34,
3 5 Wiee featire 12 iggwats tw pos@we chast. Seatures 12 wred 110 ivdhcane £
X u X
Es 24 04 Vustance 3 151, Owd 320
& ye Fasture F1 rfluscces £ smading to the predeton of class 1 ltastotence 0
oz
0
L ao R
£ > # - el
& 5 o £ £
& o & &
& F
-

Figure 1 RAISE Algorithm Performance Analysis

The results of this evaluation, demonstrate the compelling advantages of the RAISE framework. In terms of fidelity,
RAISE achieved a score of 0.983, which was statistically indistinguishable from the gold-standard SHAP baseline (0.991)
at a p-value > 0.05 using a two-tailed t-test. This indicates that the adaptive selection process does not come at the expense
of faithfulness; the explanations generated under RAISE's orchestration are as truthful to the original model's reasoning
as those produced by a dedicated high-fidelity method. The most striking result was in human interpretability. RAISE
achieved an HIS of 4.1, representing a 22.7% improvement over the next-best baseline, LIME, which scored 3.5. This
difference was highly statistically significant (p < 0.01) and provides strong empirical evidence that adapting the
explanation type to the context leads to explanations that are perceived as clearer and more useful by human stakeholders.
The Random Selector baseline scored lowest on HIS (3.0), underscoring that not all strategies are equally effective for all
situations and that intelligent selection is key. Regarding computational performance, RAISE was the fastest method, with
an average latency of 211 milliseconds. This was over five times faster than SHAP (1240 ms) and 34% faster than LIME
(320 ms), conclusively demonstrating its suitability for real-time or near-real-time industrial applications where
explanation latency is a critical constraint.

A deeper analysis of the learned behavior of the RAISE agent reveals the source of its performance gains. By examining
the policy network's outputs under different conditions, we observed that it learned meaningful and intuitive correlations.
For instance, when the model's prediction confidence was low, indicating high uncertainty or a borderline case, the agent
strongly favored the Causal Chain explanation strategy. Qualitative analysis of these explanations showed they provided
a narrative structure that helped users reason through ambiguity. Conversely, for high-confidence, routine predictions, the
agent defaulted to the concise Feature Importance strategy, providing efficient communication of the primary drivers.
Furthermore, when the context tag indicated a "safety critical" scenario, the policy showed a marked increase in the
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selection of Counterfactual explanations. These "what-if" scenarios are particularly valuable in high-stakes situations for
understanding the model's decision boundaries and potential failure modes. This learned policy demonstrates that RAISE
successfully internalized the complex mapping from multi-faceted states to appropriate explanatory actions. Ablation
studies provided further validation. Removing the context tag from the state vector caused a 15% drop in the Human
Interpretability Score, confirming that contextual awareness is a primary contributor to the framework's effectiveness.
Similarly, removing the computational cost term from the reward function during training led to a policy that favored
slightly more accurate but significantly slower strategies, increasing average latency by 40% without a commensurate
gain in fidelity or HIS, validating the importance of the multi-objective optimization for practical deployment.

V. DISCUSSION

The empirical validation of the RAISE framework confirms its technical merits, but its true significance lies in its potential
to address profound, systemic challenges impeding the realization of Industry 4.0's full potential. The discussion that
follows elaborates on the implications of this work for key areas of industrial Al, considers its limitations, and outlines a
trajectory for future research and development.

A paramount challenge in the integration of advanced Al into industrial workflows is the establishment and maintenance
of appropriate human trust. Trust is not a binary state but a calibrated relationship that depends on the reliability,
transparency, and predictability of the automated partner. Opaque black-box models, by their nature, inhibit this
calibration, often leading to patterns of disuse, where operators ignore potentially valuable Al recommendations, or
misuse, where they comply with recommendations without critical oversight. RAISE directly intervenes in this dynamic
by providing explanations that are contextually relevant and cognitively aligned with the human's needs. For a control
room operator facing a cascade of alarms, a RAISE-generated causal chain explanation that succinctly links a spike in
temperature to a valve failure recommendation is far more trust-building and actionable than a dense table of SHAP values.
By making the Al's reasoning more accessible and relatable, RAISE facilitates what is known as trust calibration, enabling
human operators to develop an accurate mental model of the Al's capabilities and limitations. This fosters a more effective
form of human-in-the-loop oversight, where the human expert is empowered to validate, question, or override the Al with
understanding, transforming the relationship from one of blind automation to one of collaborative intelligence.

From an infrastructural and scalability perspective, RAISE offers a solution to a critical bottleneck: the computational
intractability of high-fidelity XAl for real-time data streams. Traditional methods like SHAP, while invaluable for offline
analysis, are often prohibitive for continuous explanation generation from thousands of IloT sensors. The efficiency of
RAISE, evidenced by its low latency, makes the vision of "explainability-by-default" for real-time industrial Al a practical
possibility. This enables a new class of applications—real-time diagnostic assistants that not only flag anomalies but
immediately justify them, or adaptive control systems that can explain their parameter adjustments to engineers. By
moving explanation generation from the cloud to the edge with minimal overhead, RAISE supports the decentralized
intelligence model central to modern industrial architectures, ensuring that transparency keeps pace with the speed of
automated decision-making.

Furthermore, RAISE introduces a powerful, multi-faceted tool for the entire AI model lifecycle, far beyond initial
deployment. The adaptive nature of its explanations provides unique diagnostic signals for system health. For example, a
persistent shift in the agent's policy toward counterfactual explanations for a certain asset might indicate that the model is
frequently operating near its decision boundary for that asset, a potential signal of data drift or a changing physical
environment. Similarly, if causal explanations begin to consistently highlight a sensor that was previously unimportant, it
could point to the emergence of a new failure mode or a sensor calibration issue. Thus, the RAISE framework itself
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becomes a source of meta-knowledge about the Al system's operation, aiding data scientists and engineers in proactive
maintenance, model retraining decisions, and overall system governance. It transforms XAl from a passive reporting tool
into an active component of system observability.

Despite its promising results, the current instantiation of RAISE has limitations that open avenues for future work. First,
the framework requires an initial training phase with a defined reward function. In domains without historical data or clear
reward proxies, this setup cost could be a barrier. Investigating meta-learning techniques to allow quick adaptation to new
domains with minimal data, or developing methods to learn reward functions directly from implicit human feedback, are
important next steps. Second, while our reward function includes a proxy for human interpretability, integrating explicit,
scalable human feedback mechanisms is crucial for creating truly human-in-the-loop adaptive systems. Designing
interfaces for efficient feedback collection (e.g., through simple ratings or interaction patterns) and incorporating this
feedback into online policy updates is a significant research challenge with high practical payoff. Third, the current
framework operates on a single node or system. For large-scale, multi-factory deployments, a federated learning approach
to training the RAISE policy could be invaluable. This would allow collaborative learning of effective explanation
strategies across different sites and processes without centralizing sensitive operational data, enhancing both
generalizability and privacy. Finally, the Explanation Strategy Bank, while diverse, is not exhaustive. A fruitful direction
is the incorporation of domain-specific explanation strategies that leverage pre-existing knowledge, such as physics-based
model simulations or ontologies of industrial processes, to generate explanations that are not only faithful to the data-
driven model but also grounded in domain theory, further enhancing their credibility and usefulness for expert users.

VI. CONCLUSION

This paper has presented RAISE, a comprehensive and novel framework that leverages Reinforcement Learning to pioneer
a new paradigm of adaptive, context-aware Explainable Al for Industry 4.0. Confronting the critical shortcomings of
static, one-size-fits-all XAI methods, RAISE reconceptualizes explanation generation as a dynamic sequential decision-
making problem. Through the formalization of a Markov Decision Process with a rich state space, a diverse action space
of explanation strategies, and a meticulously crafted multi-fidelity reward function, the framework enables an intelligent
agent to learn the optimal mapping from situational context to explanatory action. This learning optimizes for the essential
triad of industrial XAI: unwavering fidelity to the original black-box model, superior human interpretability as rated by
domain stakeholders, and stringent computational efficiency.

The extensive experimental evaluation conducted on established industrial datasets provides robust validation. RAISE
demonstrated its ability to match the high fidelity of state-of-the-art methods like SHAP while significantly surpassing all
baselines in human-rated interpretability and achieving the lowest explanation generation latency. These results are not
merely incremental; they represent a qualitative shift toward XAl that is genuinely fit for purpose in dynamic, time-
sensitive, and human-centric industrial environments. The learned behavior of the agent further confirmed its capacity to
make intuitive, context-sensitive decisions, such as providing causal narratives for uncertain predictions and concise
summaries for routine operations.

The implications of this work extend beyond a technical contribution to algorithm design. RAISE offers a practical
pathway to overcome some of the most persistent barriers to Al adoption in industry: the crisis of trust arising from opacity,
the impracticality of real-time transparency, and the difficulty of maintaining and debugging complex Al systems over
time. By fostering calibrated human trust, enabling real-time edge-deployable explanations, and serving as a diagnostic
tool for the Al lifecycle, RAISE directly addresses core research gaps in the realization of trustworthy, collaborative, and
resilient Cyber-Physical Systems. As Industry 4.0 continues to evolve, the integration of intelligent, adaptive transparency
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mechanisms like RAISE will be indispensable for building the safe, efficient, and human-centered smart factories of the
future. This work lays a foundational architecture and demonstrates a compelling proof of concept for that essential
integration.
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