v International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
y 1 Volume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05201
3}“""""‘3’% An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

Real-Time Image Processing Acceleration Through Verilog HDL on FPGA
Platforms

Sumanta Karmakar!, Gurjeet Singh!, Apurba Chatterjee*Souvik Auddya®, Raj Vardhan Prasad?
!Assistant Professor, ECE Department, Asansol Engineering College
sumanta.ece(@aecwb.edu.in, gurjeet.ece(@aecwb.edu.in,

2 Assistant Professor, EE Department, Asansol Engineering College
hodee@aecwb.edu.in
3 Assistant Professor, EE Department, Asansol Engineering College

Corresponding author: sumantakarmakar799@gmail.com

Abstract

Real-time image processing is closely linked to monitoring systems that require immediate responses. In the
medical field, it significantly enhances diagnostic technologies such as MRI and CT imaging. Likewise,
modern security infrastructures rely on image processing for functions including facial recognition and
surveillance. These cases demonstrate the wide-ranging applications and increasing importance of image
processing across multiple domains.

The ISE Design Suite facilitates hardware development by providing tools for synthesis-based design
compilation, timing analysis, RTL schematic generation, behavioral simulation under varying inputs, and
device configuration through its integrated programming utilities.

In this work, design development and simulation are carried out using the Xilinx ISE Design Suite. Input
images are first converted into hexadecimal format using MATLAB, ensuring smooth compatibility with the
FPGA workflow. The outcomes clearly demonstrate the FPGA’s capability to manage real-time image
processing tasks with high efficiency and reliability.

Over time, the image processing field has evolved substantially. Early techniques were largely manual and
focused on simple operations such as basic enhancement or image resizing. With advancements in technology,
more sophisticated functions—Ilike brightness control, inversion, thresholding, and binary conversion—have
been refined to improve visual understanding. This project ultimately confirms that FPGA architectures offer a
powerful and adaptable platform for implementing real-time image processing solutions.

Index Terms—Xilinx ISE Design Suite, MATLAB FPGA, Image Processing.

Introduction

In recent years, image processing has gained significant traction within embedded systems, particularly in
applications such as real-time vision, medical diagnostics, and surveillance. Traditional software-based image
processing solutions are often unsuitable for time-critical operations and low-power environments due to their
high energy consumption and limited processing speed. As a result, Field Programmable Gate Arrays
(FPGAs) have emerged as compelling hardware-oriented alternatives, offering high throughput, flexibility,
and the ability to execute parallel data operations efficiently.

This paper outlines the design and implementation of essential image processing functions on an FPGA
platform using Verilog Hardware Description Language (HDL). Employing HDLs provides designers with
improved control over simulation, timing analysis, and the overall behavior of digital systems. The
implemented algorithms leverage spatial parallelism to exploit the inherent parallel-processing capabilities of
FPGA:s.

As noted by Narayan, Jayamma et al. [2], this flexibility can be extended into various digital signal processing
applications. Today, image processing finds widespread use in domains such as medical imaging,

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page1l

mailto:sumanta.ece@aecwb.edu.in
mailto:gurjeet.ece@aecwb.edu.in
mailto:hodee@aecwb.edu.in
mailto:sumantakarmakar799@gmail.com

’ International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
b S— ¥ Volume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05201
3}“""""‘3’% An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

meteorology, computer vision, digital photography, and microscopy [3]. Digital image processing frequently
applies mathematical morphology to extract features from images. These nonlinear techniques enable
modifications to pixel structures or the examination of geometric patterns, aligning with the definition of
morphology—the study of shapes—described by Sumera and R. Ganesh [4].

Image enhancement techniques aim to improve the perceptual quality of an image either by emphasizing key
features or reducing uncertainty between different regions [5]. This research demonstrates how input images
can be preprocessed in MATLAB, converted into hexadecimal representation, and further processed using
custom Verilog modules on an FPGA through the Xilinx ISE Design Suite. A wide array of digital image
processing strategies is available, with the core algorithms in this work focusing on thresholding, inversion,
contrast adjustment, and brightness control.

A. OVERVIEW

This work focuses on implementing fundamental image-processing operations on an FPGA platform using
Verilog HDL, supported by MATLAB for image data conversion. MATLAB is primarily used to preprocess
the input image, convert it into grayscale, and export it as a hexadecimal (.hex) file. This file serves as an
interface that allows Verilog-based FPGA modules to efficiently access and manipulate pixel information.

Key image-processing functions—such as binary conversion, thresholding, brightness adjustment, and image
inversion—are designed as individual Verilog modules. These modules are verified using Xilinx ISE
simulation tools, and their accuracy and performance are evaluated by reconstructing and analysing the
processed image output. The methodology highlights modularity, reusability, and real-time capability of the
processing units. The main goal is to execute real-time operations, including brightness increment, brightness
reduction, inversion, and thresholding on 24-bit RGB images. After development within the Xilinx ISE
Design Suite, the final design is deployed onto an FPGA for hardware validation. This hardware-centric
approach demonstrates the advantages of FPGA-based image processing, particularly its ability to deliver
high-speed, parallel data handling for embedded vision applications.

B. OBJECTIVES

The importance of this work stems from its potential to improve image quality across numerous domains such
as healthcare imaging, security surveillance, and remote sensing. For instance, automotive driver-assistance
systems require real-time video analytics that traditional DSP processors cannot efficiently deliver due to
limited processing power [6].

The objectives of this study include:

. Demonstrating real-time image processing using Verilog HDL through an FPGA-based
implementation.

. Establishing smooth integration between MATLAB and Verilog by generating FPGA-
compatible hexadecimal image data.

. Designing modular Verilog components to implement and test basic image-processing
operations such as inversion, thresholding, and brightness control.

. Displaying and validating output results through simulation on the Xilinx ISE Design Suite.

. Investigating the capabilities of FPGAs to accelerate image processing compared to traditional

software approaches.
Real-time image processing demands systems with characteristics such as high speed, adaptability, easy
upgradability, and low development cost [7]. Tools like the Xilinx CORE Generator System provide optimized
and customizable IP cores specifically built for Xilinx FPGA architectures [8].

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page2

v International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
y 1 Volume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05201
3}“""""‘3’% An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

C.APPLICATIONS
Using Verilog HDL on FPGA for image processing delivers significant benefits in applications where speed,
determinism, and resource efficiency are essential.
. FPGA-Based Machine Learning Integration:
The scope of this work can be expanded by incorporating machine learning models for tasks like
object detection or image classification. Deploying neural networks or lightweight ML models directly
on hardware is highly advantageous for edge devices, and this project can serve as a starting point for
such developments.
. Multichannel Image Processing:
Future enhancements may include multi-channel (RGB or multispectral) image-processing capabilities
for advanced analysis. This is particularly relevant for medical imaging systems (MRI, CT) and
satellite-based remote sensing.
. Real-Time Video Surveillance:
Continuous, low-latency video analysis is vital in security-sensitive environments such as airports,
banks, and public infrastructures. Software-only systems often struggle with high-resolution, high-
frame-rate video streams. FPGA-based implementations enable fast processing for applications
including movement detection, facial recognition, and anomaly identification.
. Industrial Automation:
FPGA-based image processing supports on-chip inspection tasks such as defect identification, barcode
interpretation, and machine vision in manufacturing. It is also beneficial in robotics, autonomous
vehicles, and UAVs, where rapid thresholding, grayscale conversion, and feature extraction are
required.
. Military and Aerospace:
FPGAs are widely used in defense and aerospace systems for guided missiles, satellite imaging, and
surveillance drones. They offer rugged, high-performance image processing essential for navigation,
targeting, and real-time observation.

METHODOLOGY
A. BRIGHTNESS OPERATION
* Increasing Brightness

In the proposed FPGA-based image processing framework, brightness enhancement is achieved by modifying
the intensity values of each pixel's RGB components using Verilog HDL. A control signal, SIGN, determines
whether the system should increase or decrease brightness. When the signal indicates addition (SIGN == 1),
the design enhances throughput by processing two horizontally adjacent pixels per clock cycle.

Pixel data is accessed from one-dimensional memory arrays—org R, org_G, and org B—using a linear
address calculated as (WIDTH x row + col), where WIDTH denotes the image number of columns. A constant
VALUE is added to each color channel to increase brightness.

To avoid overflow, the computed values are compared against the maximum 8-bit limit (255). If the sum
exceeds 255, saturation logic clips the output to 255; otherwise, the computed value is retained. This ensures
that pixel values remain within legal image boundaries, preventing distortion. The brightness-addition module
supports low-latency, real-time image processing by utilizing FPGA parallelism and resource efficiency.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page3

1EM Y International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
1 R i Volume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05201

s
o ""“@5 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

-

L

Decreasing Brightness

Brightness reduction is implemented by subtracting a fixed VALUE from the RGB intensities of each pixel
whenever the control signal SIGN is low. Using the same linear addressing scheme, the system fetches two
adjacent pixels per iteration from the image memory arrays.

To avoid underflow (values dropping below 0), conditional checks ensure that negative results are clipped to
0. Otherwise, the subtracted value is preserved. This guarantees that all pixel intensities remain within the
valid 0-255 range. Processing two pixels simultaneously improves execution speed and optimizes FPGA
resource utilization. This hardware-based architecture is suited for real-time applications such as contrast
reduction, low-light filtering, and adaptive brightness control.

B. THRESHOLD OPERATION

Thresholding is a key technique in image processing used to identify important regions by converting
grayscale images into binary form. A fixed threshold divides pixel intensities into two categories: pixels with
intensities above the threshold become white (255), while all others become black (0). This method is
computationally simple and ideal for FPGA-based real-time systems.

Mathematical Basis

Given an RGB pixel, its grayscale intensity is computed as:

R+G+E

Gray =
: 3

The binary output is obtained using:

255, ifGray =T

Binary = .
y=A{ 0, otherwise

This logic effectively separates the image into foreground and background regions.

In the Verilog implementation, the thresholding logic is enclosed within a conditional macro (ifdef
THRESHOLD OPERATION). For each pixel at coordinates (row, col), the grayscale value is calculated
and then compared with the predefined threshold T. If the grayscale value exceeds T, all RGB channels are
set to white; otherwise, to black. The adjacent pixel at (row, col + 1) is processed similarly in the following
block.

C. BLACK AND WHITE (GRAYSCALE) OPERATION

Converting an RGB image to grayscale is a fundamental step in many image processing pipelines. This
transformation reduces the 24-bit RGB representation (8 bits per channel) into a single 8-bit intensity value
while preserving critical visual information and simplifying further analysis.

Mathematical Principle

Each pixel consists of R, G, and B components, and its grayscale value is computed by:

R+G+E

Gray =
: 3

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page4

International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
g i¥ Volume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05201
3}“""""‘3’% An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

While weighted grayscale methods (which emphasize green) may produce more visually accurate results, the
averaging technique is preferred for FPGA implementations due to its simplicity and low hardware cost.

The Verilog grayscale module is conditionally executed using the ifdef BLACK and WHITE _OPERATION
directive. For each pixel at (row, col), the module retrieves the components from org R, org_G, and org_B,
computes the average, and assigns this grayscale value to all color channels of the output pixel (DATA RO,
DATA GO, DATA BO). This effectively converts the pixel into its black-and-white equivalent.

D. INVERT OPERATION

Inversion is a simple, yet effective pixel-level transformation widely used in FPGA-based real-time
applications, including feature extraction, edge highlighting, and visual enhancement. The Verilog module
responsible for inversion is wrapped within the INVERT _OPERATION macro, ensuring that the code is
executed only when inversion is enabled during synthesis or simulation.

The inversion logic operates on RGB values stored in arrays org_R, org_G, and org_B, indexed using the
linear address (WIDTH % row + col). The inversion formula applied to each color component is:

Inverted = 255 — Original

This produces the complementary color of each pixel. The results for the current pixel (row, col) are stored in
DATA RO, DATA GO, and DATA BO. The values for the next pixel (row, col + 1) are stored in DATA RI,
DATA G1, and DATA BI. This dual-pixel processing pattern is characteristic of FPGA architectures
optimized for high-throughput image processing.

LITERATURE REVIEW

Image transformation processes often lead to quality degradation, making enhancement techniques essential
for improving visual clarity. Methods such as contrast stretching, brightness modification, inversion, and
thresholding are commonly applied to refine image quality. Although both software and hardware platforms
can execute these operations, hardware-based solutions provide significantly higher performance. This work
emphasizes the use of reconfigurable hardware—specifically Field Programmable Gate Arrays (FPGAs)—to
achieve real-time image enhancement using Hardware Description Languages (HDLs). Such an approach
introduces an efficient and flexible technique within digital system design and VLSI applications [9].

Thinning, another key image processing technique, extracts the structural skeleton of an object from a digital
image. It identifies only the essential pixels that represent the object’s shape, resulting in a simplified and
compact representation of image information [10].

In recent years, programmable devices such as FPGAs, Complex Programmable Logic Devices (CPLDs), and
Application-Specific Integrated Circuits (ASICs) have become increasingly prominent in digital image
processing due to their speed and hardware-level optimization capabilities [11].

FPGAs, in particular, have established themselves as powerful platforms for high-speed image processing.
Unlike digital signal processors (DSPs), which rely on sequential execution, FPGAs leverage customized,
parallel hardware architectures for superior throughput. Research has explored FPGA-based implementations
of enhancement algorithms, including brightness control, contrast manipulation, negative imaging,
thresholding, and filtering. Using MATLAB’s System Generator, a modular image-processing framework was
created and deployed on a Spartan-3E board. Experimental evaluation demonstrated improvements in visual

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page5s

International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
e Yolume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05201

o
3}“""‘"4?:3 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

quality and efficient hardware resource usage, highlighting System Generator’s potential for real-time FPGA
algorithm development [12].

The Bitmap (BMP) format is frequently used in such studies due to its raw, uncompressed nature, which
preserves complete pixel information. While this results in large file sizes, BMP is ideal for applications that
require pixel-level accuracy and do not tolerate compression distortions [13].

Further research highlights the increasing demand for high-performance image-processing methods that have
traditionally relied on software environments like MATLAB. A notable study implemented four basic
enhancement operations—thresholding, contrast adjustment, brightness modification, and image inversion—
using Verilog HDL on a Terasic DEO-Nano FPGA platform. The results demonstrated superior performance,
reduced execution time, and improved long-term efficiency compared to pure software solutions. The study
confirms the effectiveness of hardware acceleration in improving processing accuracy and system
responsiveness, while also offering a scalable design for future enhancements [14].

Another work proposes an effective method for improving images degraded by low lighting and haze,
conditions that significantly impact computer vision performance. The authors developed a simple yet
powerful enhancement algorithm combining brightness and contrast adjustments, implemented entirely in
Verilog HDL for hardware efficiency. Testing on 100 vehicle license plate images showed that their method
outperformed two conventional approaches in terms of peak signal-to-noise ratio (PSNR) and mean square
error (MSE). The study suggests strong potential for FPGA-based prototyping in real-time systems such as
automated license plate recognition and surveillance applications [15].

From a storage perspective, JPEG (JPG) uses lossy compression to significantly reduce file size, making it
suitable for web applications and bandwidth-limited environments. However, repeated editing degrades
quality due to irreversible data loss. Conversely, BMP retains full pixel integrity and is thus preferred for
precise operations such as FPGA-based processing, editing, printing, and algorithm evaluation. In this work,
both formats are used depending on the requirements—JPEG for compact storage and BMP for high-fidelity
processing. This dual-format strategy contributes to the distinctiveness of the project.

The versatility of the presented design lies in its ease of modification. Parameters such as brightness level,
threshold value, or image dimensions can be changed with minimal adjustments to the Verilog code, allowing
the same architecture to support a wide range of image-processing tasks. The FPGA implementation is well
suited for real-time applications, compatible with multiple Xilinx families, and supports on-chip memory for
continuous, high-speed image testing.

These advantages collectively demonstrate the strong potential of FPGA-based image processing using
Verilog HDL within the Xilinx ISE Design Suite, reinforcing its relevance for modern embedded vision
applications.

SOFTWARE IMPLEMENTATION

The software implementation of this project relies on two primary tools: MATLAB for preprocessing the
input image and Xilinx ISE Design Suite for simulating and executing Verilog-based image processing
algorithms. Each software component plays a vital role in preparing and processing the image before it is
transferred to the FPGA.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Pageé6

t-' 1SJEM Y International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
Sy Volume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05201
‘3&’. ""'k An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

A. Image Preprocessing Using MATLAB

The first stage involves preparing the input image in MATLAB so it can be efficiently processed by the FPGA
hardware. The source image, project image 99.jpg, is imported using MATLAB’s imread() function. The
image has a resolution of 512 x 768 pixels and is processed in its original RGB format rather than being
converted to grayscale. This allows direct manipulation of pixel-level values across all three color channels.

For each pixel, MATLAB extracts the red, green, and blue components and stores them consecutively in a
one-dimensional array. To ensure FPGA compatibility, the 8-bit RGB values are converted into hexadecimal
format. Following the row-major convention required by the Verilog modules, the image is traversed from the
bottom row to the top row.

MATLARB?’s file-handling commands — fopen, fprintf, and fclose — are used to write the processed pixel
values to a .hex file, placing one hexadecimal entry per line. Upon completion, a confirmation message
appears in the MATLAB console.

This HEX file serves as the input for the Verilog testbench, which subsequently performs operations such as
negative transformation, brightness variation, thresholding, and binary conversion.

This preprocessing step ensures that the MATLAB-generated image data is fully compatible with the FPGA
environment, enabling smooth integration with the Verilog-based hardware modules.

Figure 1 MATLAB CODE WINDOW

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page7?

P e XY

e

W £5C <

1sJEM Y International Scientific Journal of Engineering and Management (ISJEM)
- _L'.‘{ Volume: 04 Issue: 11 | Nov - 2025
An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

ISSN: 2583-6129

DOI: 10.55041/ISJEM05201

From the figure 1 we can see that code for the jpg to hex file is implemented and our input file

Figure 2 MATLAB HEX FILE WINDOW

“project_image 99.jpg”
Is successfully converted into hex file as we can see it in figure 2.

A.

The hardware development environment, the Xilinx ISE Design Suite, is used to implement, simulate, and
synthesize the Verilog HDL code. The testbench downloads the MATLAB-generated .hex file and positions
the pixel intensity values into FPGA memory structures. One of the image processing functions—inversion,
brightness addition/subtraction, thresholding, or black-and-white conversion—is carried out in response to

Simulation and Processing in Xilinx ISE Design Suite

control signals.

For the implementation of the following above image processing functions, we have to select the FPGA

board.

We can see the figure 3 where we have selected the FPGA board of Artix 7 family and the device was

v Mew Project Wizard

“—Project Settings
Specify device and project properties.

Select the device and design flow for the project

Property Mame

Ewvaluation Development Board
Product Categorny

Famiby

Device

Package

Speed

Top-Level Source Type

Synthesis Tool

Simulator

Preferred Language

Property Specification in Project File
Manual Compile Order

YWHDL Sowurce Analysis Standard

Enable Message Filtering

Value

Mone Specified
Aldl

ArtiT
KCTAT00T
C5G324

-3

HDL

H5T (WHDL/ Verileg)
1Sim (WHDL/ Werilog)
Werilog

Store all values

1

WHDL-92

|

CHEHS NS e Ile

CHE NS IS

{

Figure 3 FPGA BOARD SELECTION

XC7A100T and the package is CSG324 with a speed of -3.

© 2025, ISJEM (All Rights Reserved)

| www.isjem.com

Page 8

International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
Volume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05201
An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

In Figure 4, the hierarchy structure plays a crucial role. The parameter file appears at the top of the hierarchy
since it contains all the include files as well as the necessary define statements. Below it is the testbench,
which is further divided into two submodules: image read and image write. Maintaining this order is
essential for correct behavioral simulation. The hierarchy also displays the project files created by the user
along with the name of the selected FPGA board.

After processing, the Verilog testbench writes the modified pixel data into a new bitmap (.bmp) output file.
This allows the processed image to be viewed directly, helping verify the correctness of the Verilog
implementation. All operations—from image reading to output generation—are executed entirely inside the
ISE environment, accurately emulating how the design would function on actual FPGA hardware. No
additional MATLAB post-processing is required.

Once the desired operation is chosen (by uncommenting the corresponding module), the simulation can be
executed. To generate the simulation window, the user selects the testbench and runs the simulation.

Figure 5 displays the simulation output window. To complete the simulation, the user enters run 6 ms, waits
for execution to finish, closes the window, and then locates the generated output file in the project directory.

The resulting image is saved automatically in the ISE folder. Depending on the requirement, the output can be
generated in either BMP or JPG format.

RESULTS

The proposed image processing framework was implemented successfully by using MATLAB for input
preprocessing and the Xilinx ISE Design Suite for simulating the Verilog HDL-based hardware modules. Since
Verilog cannot directly read JPG files, the input image was first converted into BMP format. Five different image
operations—inversion, brightness enhancement, brightness reduction, black-and-white conversion, and
thresholding—were executed by enabling the corresponding block within the parameter file. This approach
demonstrates the modularity and flexibility of the design, as each operation can be activated simply by
uncommenting its respective section.

Figure 7(a) shows the original 768%x512 RGB image, which serves as the reference for all processing outputs.
MATLAB extracted the RGB pixel values and stored them in a .hex file, which is then read by the Verilog
testbench.

The inverted output image shown in Figure 7(b) is generated by applying the transformation 255 —
pixel value to every 8-bit pixel, effectively reversing the intensity levels. This inversion logic is implemented
directly in Verilog.

Brightness enhancement, shown in Figure 7(c), is achieved by adding a constant scalar value to each pixel.
Any result exceeding the 8-bit maximum is capped at 255. The processed image exhibits visibly increased
illumination, particularly in darker regions, without causing excessive saturation.

Conversely, brightness reduction—displayed in Figure 7(d)—subtracts a constant value from each pixel and
clamps the output at 0 to avoid underflow. This produces a darker version of the input image, useful in
scenarios requiring contrast suppression or low-light simulation. The output confirms that bright regions are
appropriately dimmed while maintaining image structure.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page9

£
& 3
> Al g

:;ISJEM:; International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
‘ij S L‘,’ Volume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05201
.- An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

The black-and-white image in Figure 7(e) is generated by converting the input into a binary format using a
predefined threshold. This operation evaluates each pixel and assigns it either 0 or 255, producing a strictly
two-level representation.

Figure 7(f) illustrates the thresholded output, which further enhances contrast and suppresses high-frequency
content. This fixed-level thresholding technique effectively highlights prominent edges and removes
background noise, making it suitable for feature extraction and object detection applications. Thresholding
essentially performs a special form of quantization where pixel values above the threshold are set to 255 and
those below are set to 0, as commonly applied in 8-bit grayscale images [16].

R (€3]

Figure 4 (a) ORIGINAL IMAGE (b) INVERTED IMAGE (c) ADDITION BRIGHTNESS IMAGE (d)
SUBTRACTION BRIGHTNESS IMAGE (¢) BLACK & WHITE IMAGE (f)y THRESHOLD IMAGE

FUTURE SCOPE

* Incorporation of Advanced Image Processing Techniques:

Future enhancements may include implementing more sophisticated operations such as object detection,
image sharpening, morphological transformations, edge detection methods (like Sobel and Canny), and
filtering algorithms (such as Gaussian and median filters). Adding these will significantly expand the
capability of FPGA-based imaging systems, enabling applications such as motion tracking and facial
recognition.

* Hardware Acceleration for Machine Learning:

The framework can be extended to accelerate convolutional neural networks (CNNs), which are widely
used for real-time tasks such as object classification and human detection. Implementing neural network
blocks on FPGA would greatly enhance processing speed and efficiency.

* Real-Time Video Stream Processing:

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 10

v, International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
i Volume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05201

| M

e

T
viﬁm""""’vﬂg An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

Transitioning from static image processing to continuous video processing would unlock applications in
autonomous navigation, surveillance systems, and medical imaging. The inherent parallelism of FPGAs
makes them ideal for such real-time demands.

* Integration with IoT and Edge Devices:

The architecture can be adapted for deployment in IoT-based systems or edge processors, enabling on-
device decision-making in smart surveillance, industrial monitoring, and automated inspection systems.

* Support for High-Resolution Imaging:

Extending the design to handle high-resolution images (4K, 8K) while preserving real-time performance
would test the scalability of the system and further highlight the efficiency of FPGA-based solutions.

* SoC-Based Implementation:

The design may be ported to System-on-Chip platforms such as Xilinx Zynq, which integrate an FPGA
fabric with an ARM processor. This would support hybrid image-processing workflows combining
hardware acceleration with software control.

* Direct Camera Interface:

Instead of relying on pre-stored images, the FPGA can be connected to live camera modules to process
real-time video feeds. This enhancement would support applications such as autonomous robotics,
industrial automation, and intelligent traffic systems.

* FPGA—Cloud Collaboration:

The architecture could be extended to push processed outputs to cloud servers for further analysis or
storage. This would be highly beneficial for [oT ecosystems and remote monitoring applications.

* Multichannel and Multispectral Image Processing:

Future implementations can incorporate multi-channel (RGB) or multispectral image processing to
enhance accuracy. This is especially valuable in medical diagnostics (MRI, CT), agriculture, and satellite
imaging.

CONCLUSION

This work presents a hardware-accelerated approach to executing essential image processing operations
using Verilog HDL on an FPGA platform within the Xilinx ISE Design Suite. The implemented
functions—including brightness adjustment, inversion, thresholding, and brightness reduction—were
successfully realized, illustrating the FPGA’s strength in handling pixel-level parallelism. MATLAB
played a vital role in converting JPG images into HEX format, simplifying the data preparation stage and
enabling smooth integration with the hardware modules.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Pageill

151eM Yy International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
W Volume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05201

o
3}“""‘"4?:3 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

The overall hardware—software co-design highlights the performance advantages of FPGAs over
traditional software-only solutions, particularly in terms of speed, configurability, and resource
optimization. The results confirm the feasibility of using FPGAs for real-time image transformation and
provide a solid foundation for future enhancements such as edge detection, filtering, and Al-assisted image
analysis.

ACKNOWLEDGMENT

I extend my heartfelt gratitude to my project guide, Prof. Parul Panchal, for their continuous support,
insightful feedback, and valuable guidance throughout this work. Their expertise in image processing and
FPGA systems has been instrumental in completing this project successfully.

References

° Nada Qasim Mohammed, Muataz H. Salih, Rafikha Aliana, Qasim Mohammed Hussein and
Noor Aldeen A. Khalid,” FPGA implementation of multiple ima%e é)rocessing algorithms using spatial
1e

8r1aélelism” presented ARPN Journal of Engineering and App Sciences vol. 13, no. 15, august

) Prof. Narayan A. Badiger, Miss.Jayamma Muragod, Miss.Poornima Pattar,Miss. Priyanka
Gundlur, Miss.Savita Bhadri, "FPGA Implementation of Image Enhancement using Verilog HDL"
presented International Journal of Engineering & Technology (IRJET) Volume 7 Issue 6, June 2020.

o Neha. P. Raut, Prof.A.V.Gokhale, "FPGA Implementation for Image Processing Algorithms
Using Xilinx System Generator " presented IOSR Journal of VLSI and Signal Processing (IOSR-
JVSP) Volume 2, Issue 4 (May. — Jun. 2013)

o Sumera Sultana, R.Ganesh , "FPGA Implementation of Binary Morphological Processing for
Image Feature Extraction" presented International Journal —of Engineering & Technology
(IRJET) Volume 4 Issue 10, October 2015.

° Dr. Sagar Patel, Krinesh Patel, Keval Patel and Chaitanya Patel, "Image Enhancement on
FPGA using Verilog " {}resented International Journal of Technical Innovation in Modern Engineering
& Science (IJTIMES) Volume 5 Issue 3, March 2019.

o Shamsiah Suhaili, Joyce Huong Shing Yii, Asrani Lit, Kuryati Kipli, Maimun Huja Husin,
Mohamad Faizrizwan Mohd Sabri, Norhuzaimin Julai, "Development of Digital Image Processing
Algorithms via FPGA Implementation " presented Semarak International Journal of Electronic System
Engineering Volume 3 Issue 15, September 2024.

o iuliana chiuchisan, marius cristian cerlincd,” Implementation of Real-Time System for Medical
Image Processing using Verilog Hardware Description Language” presented Recent Researches in
Medicine, Biology and Bioscience.

o B.Muralikrishna, K.Gnana Deepika, B.Raghu Kanth, V.G.Swaroop Vemana , "Image
Processing using IP Core Generator through FPGA ™ presented International Journal of Computer
Applications Volume 46— No.23, May 2012

. Mahavir Singh, Gitanjali Pandove, “An Implementation of Image Enhancement on Real Time
Configurablse system using HDL" published in International Journal of Advanced Research in
Electronics and Communication engineering volume 7, issue 3, March 2018.

o Dr G Sankar , "Implementation of an Image Thinning Algorithm using Verilog and MATLAB "
presented Journal of Nonlinear Analysis and Optimization Volume 13(9) (2022), September 2022.

. Babu Ravi Teja, Abhilash S. Warrier, Akshay S. Belvadi, Dhiraj R. Gawhane, "Design and
Implementation of Neighborhood Processing Operations on FPGA using Verilog HDL" presented

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page12

gt~y

£ 73y

T
&

<

151EM Y International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
24

y U Volume: 04 Issue: 11 | Nov - 2025 DOI: 10.55041/ISJEM05201

s e
L "‘dz An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

W, £ €<

IOSR Journal of VLSI and Signal Processing (IOSR- JVSP) Volume 4, Issue 1, Ver. II (Jan. 2014).

o Kalyani A. Dakre, “A Review on Image Enhancement using Hardware co-simulation for
Biomedical Application" presented International Journal of Advanced Research in Computer
Engineering & Technology (IJARCET) Volume 3 Issue 12, December 2014.

° Sri Lakshmi , Mery Lavanya , Nikhilesh Mohan, Naga Pavan , Kavya Reddy,"HDL
implementation for real- time image properties adjustments" presented International Journal of
Engineering & Technology (IRJET) Volume 11 Issue 4, April 2024.

o Mandeep Singh Narula, Nishant Singla, "FPGA Implementation of Image Enhancement Usin
Verilog HDL" presented International Research Journal of Engineering and Technology (IRJET%
Volume 05 Issue 05,May 2018.

. Zul Imran Azhari, Samsul Setumin, Emilia Noorsal, Mohd Hanapiah Abdullah, "Digital image

enhancement by brightness and contrast manipulation using Verilog hardware description language"

;Xes%rggg3lntematlonal Journal of Electrical and Computer Engineering (IJECE) Volume 13 Issue 2,
pri .

° Kankanala Vanitha, D. Sampath Kumar, "FPGA Implementation of Image
Processing Using Image Enhancement Algorithms " presented International Journal of Advanced
Research in Electrical, Electronics and Instrumentation Engineering(IJAREEIE) Volume
7, Issue 2, February 2018.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page13

