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Abstract—This research outlines the design of a word pro- cessing 
program enriched with Natural Language Processing (NLP) 
features to enhance writing productivity, readability, and text 
correctness. The research problem being solved arises from the 
limitations of classical word processing, which is founded on 
simple spell checking and does not incorporate contextual 
awareness. The aim is to incorporate advanced NLP technologies to 
provide real-time functionality such as sentiment analysis, text 
summarization, grammar checking, and contextual suggestions. The 
process involves developing a Python Flask backend that processes 
text data using NLP models with TensorFlow. A rich text editor 
interface is offered by the frontend, which was developed with 
React.js and communicates with the backend through RESTful 
APIs. On the server side, core NLP tasks such as tokenization, 
lemmatization, POS tagging, and syntac- tic analysis are 
performed. Relative to standard editors, the result shows 
remarkable gains in text coherence and grammar correction 
accuracy. According to user testing, users are more satisfied with 
the AI-based suggestions, hence the tool is useful for informal as 
well as formal writing. This project is significant because it can help 
students, professionals, and content writers to produce content more 
efficiently with reduced errors, increased productivity, and more 
advanced writing assistance. 

Keywords: Natural Language Processing, Natural Language 

Generation, NLP Evaluation Metrics, Word Processing 

I. INTRODUCTION 

Word processors moving from plain text editors to smart writing 

tools is a reflection of a fundamental shift in how technology 

interacts with human language. At the heart of this is Natural 

Language Processing (NLP), an area of AI that lets machines 

read, analyse and create human language. NLP in word 

processors has opened the door to features like real-time 

grammar checks, context driven suggestions and even tone 

detection, and is changing the writing experience for everyone. 

This article will look at NLP in word processing software, 

the technical behind it, the practical uses and the future of 

written communication. As language models get smarter we 

need to understand the impact on productivity, creativity and 

accessibility to shape the future of writing. 

A. Background 

Rich Text Editors (RTEs) are a requirement of contemporary 

digital content creation, and they provide users with the option 

of creating, formatting, and editing written content. 

Microsoft Word, Google Docs, and TinyMCE are all 

examples of RTEs that are imperative to individual and 

professional writing activities. Their fundamental 

functionalities comprise basic formatting options (bold, 

italic, underline), in addition to spell-checking and 

grammar correction options. Because of the increased 

demand for high-quality, error-free content, RTEs now come 

equipped with features such as real-time collaboration, cloud 

storage, and exporting content in different formats [1]. 

Nevertheless, in spite of all these developments, 

conventional RTEs are not very good when it comes to their 

linguistic capabilities. They tend to use rule-based systems 

for grammar correction that are not adequate in grasping the 

meaning or context of the text and, therefore, provide 

inaccu- rate or incomplete corrections [2]. The advent of 

Natural Lan- guage Processing (NLP) has revolutionized the 

text processing process by allowing machines to understand 

and produce human language more accurately. With the 

implementation of machine learning algorithms and deep 

neural networks, NLP-capable systems can accomplish 

sophisticated linguistic operations such as sentiment 

analysis, contextual grammatical correction, and text 

summarization. The integration of NLP into Real-Time 

Editors (RTEs) has the potential to fill the gap between basic 

spell-checkers and sophisticated, context-aware composition 

assistance, thereby offering users more accurate and 

informative language suggestions [3]. 

B. Problem Statement 

Traditional RTEs, while effective in basic formatting and 

spell-checking, lack the ability to understand contextual 

mean- ing and semantic relationships between words. This 

limitation often leads to inaccurate grammar corrections or 

incorrect suggestions, especially in cases involving 

homophones, id- iomatic expressions, or complex sentence 

structures [4]. For instance, an RTE might flag 

grammatically correct sentences as incorrect due to 

oversimplified grammar rules or fail to identify nuanced 

errors, reducing the overall reliability of the tool. 

Moreover, existing RTEs do not offer advanced text anal- 

ysis features such as summarization, sentiment detection, or 

contextual phrase suggestions. This restricts their usability to 

basic proofreading rather than intelligent content 

refinement. 
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The lack of real-time, AI-powered feedback makes these editors 

less effective for content creators who require polished, 

contextually accurate text [2]. Therefore, there is a clear need to 

integrate NLP capabilities into RTEs to overcome these 

limitations and offer smarter, more intuitive writing assistance. 

C. Research Objective 

This project intends to enhance RTEs through NLP appli- cation 

for more efficient text processing. It intends to create an AI-

based word processor that can offer real-time grammar 

checking, text summarization, sentiment analysis, and context- 

based suggestions. Python (Flask) and TensorFlow-based NLP 

models are employed in the backend, and the React.js frontend 

offers an easy-to-use text editing interface. The study compares 

the functionality and precision of NLP-enhanced RTE with 

traditional editors. It seeks to demonstrate how NLP enhances 

text quality and precision through performance testing and user 

ratings. This integration allows AI-powered text editors to 

provide real-time content suggestions within context[4]. 

The integration of NLP in RTEs holds significant value for 

both individual users and organizations. For individuals, it 

provides more accurate and context-aware writing assistance, 

reducing errors and enhancing readability. This is particularly 

beneficial for students, content creators, and professionals who 

require error-free, high-quality documentation [2]. For organi- 

zations, NLP-powered RTEs can streamline content production 

workflows, improving productivity by reducing the time spent 

on proofreading and manual corrections. 

II. LITERATURE REVIEW 

A. NLP in Text Editing and RTEs 

The recent progress in Natural Language Processing (NLP) has 

led to a significant improvement in text editing capac- ity in 

Rich Text Editors (RTEs). Tools such as Grammarly and 

Microsoft Editor embrace the use of sophisticated ma- chine 

learning techniques for on-the-spot grammar correction, spelling 

checks, and stylistic suggestions. Grammarly, for ex- ample, 

uses a multi-layered NLP model that includes practices like 

tokenization, part-of-speech (POS) tagging, dependency 

parsing, and machine learning-based detection of errors in order 

to supply useful and precise feedback [4]. Google Docs in the 

same fashion uses language models that are AI-based to 

recommend real-time enhancements including the change of 

tone and the rephrasing of sentences. Yet, these tools are often 

made closed-source, which means that their interior ar- 

chitecture and NLP methods are not as transparent, thus cannot 

be replicated or modified in academic ways. The academic 

literature has gone deep into the NLP-based text improvement 

systems to automate editing tasks. The study made by Napoles et 

al. [4] suggested a grammar correction model that was recurrent 

neural network (RNN)-based, and it surpassed the rule-based 

systems in both accuracy and fluency. Studies such as the 

Bryant et al. [5] try to employ sequence-to-sequence neural 

models for grammatical error correction (GEC) and that has led 

to a brilliant improvement in accuracy compared to traditional 

methods. At the same time, the machines seem to 

 

 
 

 

Fig. 1. Traditional and NLP Enhance RTE 

 

 

be accurate in their predictions and yet they are not exact in 

the speed of the correction done on a single sentence that is 

fed live to the RTEs. 

B. Language Models for Grammar and Style Correction 

The integration of large language models (LLMs) such 

as BERT, GPT, and T5 has revolutionized text editing. The 

transformer-based models of these LLMs are very 

efficient in capturing contextual relationships in text and 

thus result in improved coherence and accuracy in grammar 

correction [6]. For instance, BERT-based models have been 

employed to assess grammar correction, with state-of-the-art 

performance on CoNLL-2014 and JFLEG datasets [7]. 

Additionally, GPT- 3 has been employed in real-time writing 

assistant tools, with sophisticated features being made 

available in sentence rewrit- ing, stylistic polishing, and tone 

adjustment [8]. Although very precise, these LLMs suffer 

from low efficiency and real-time applicability. Most of 

them consume high levels of computing resources, so they 

are not very convenient for lightweight, web-based RTEs. 

Their lack of good control over subtle areas of grammar 

rules and stylistic consistency could result in poor outputs, 

especially for unorthodox or creative writing [9]. This helps 

highlight the necessity of more efficient and more flexible 

NLP models specifically designed for application in RTEs. 

C. Real-Time Text Processing Challenges 

Although established NLP systems can perform well in 

batch processing situations, there are some challenges that 

accompany the real-time text correction problem. Real-time 

situations add complexity to the problem, since it is 

subject 
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to low-latency model inference, memory consumption man- 

agement, and minimizing API round trip time. Research by Sun 

et al. [10] aimed to address real-time grammar correction by 

proposing an incremental NLP framework, resulting in imprived 

speed of processing. Incremental models are gen- erally less 

precise than batch models, especially for complex grammar 

constructs. Another, and more subjective, angle re- garding the 

evaluation of real-time NLP editors is focused on the users 

of the system. This includes acknowledgement that many 

studies often focus mainly on the model’s accuracy metrics, 

such as F1 or BLEU scores, while not recognizing the 

importance of user satisfaction or usability. There is often a 

disconnect between what practices contribute to satisfaction or 

usability for the user, which means that studies evaluating the 

models fail to recognize how editing speed, accuracy of 

corrections, and ease of service directly affects user interaction 

with the model. [11]. 

D. Gaps Addressed by This Work 

However much work may have been done in making progress in 

NLP research for text editing, gaps clearly exist. First, it has 

proven difficult to achieve real-time processing efficiency. 

Although language models like GPT-3 are relatively high in 

accuracy, their computational resources make them unsuitable 

for any real-time browser-based RTE. This opens a gap in that 

this project will fill by utilizing lightweight TensorFlow models 

running on a Flask API thus ensuring low latency for real-

time requirements. Third, the majority of materials discussed 

in the present system do not test user evaluation centered. The 

majority of current studies emphasize algorithmic accuracy, but 

this work includes user satisfaction testing, that is both accuracy 

and usability. Lastly, most existing systems mainly focus only 

on grammar correction and leave out advanced NLP features 

like summarization, sen- timent analysis, and contextual 

recommendations. Therefore, by integrating different NLP 

capacities, this project proposes a much more holistic writing 

assistant that will fill various text editing needs. 

III. METHODOLOGY 

The methodology discusses the step-by-step procedure to 

incorporate Natural Language Processing (NLP) within Rich 

Text Editors (RTEs) for real-time editing of text. It includes five 

significant stages: research design, data collection, model 

structure, implementation, and evaluation metrics. All of these 

stages are vital while designing a robust and effective NLP- 

fortified word processor. 

A. Research Design 

The development assigned prototypes for empirical evalu- 

ations concerning the effectiveness of the systems. With this 

setup, it tackles first quantitative performance (e.g., accuracy, 

latency) and then the qualitative assessment of user experience. 

Prototype RTE is React.js frontend-and Flask Python backend- 

TensorFlow-integrated NLP models. This design is capable of 

 

 

 

Fig. 2. Research Design Workflow 

 

 

performing real time by taking text input, correcting 

grammar, and AI-based suggestions in the least possible 

time. 

The two critical phases of the research/experiment include 

• Development Phase: to build and improve on NLP 

models and integrate them with the RTE. 

• Evaluation Phase: in this phase, 50 participants 

were testing the system, in real-time inputs and 

measurements for accuracy, latency, and user satisfaction. 

The mixed-method design provides that the system’s per- 

formance is affirmed by objective metrics and subjective 

user feedback, overcoming the limitations in previous 

theoretical studies that lacked practical evaluation [2]. 

B. Data Collection 

The project uses a multifaceted dataset to ensure the system 

performs effectively on both static text corpora and dynamic 

real-time inputs. 

1) Static Dataset: Using a static data set comprising 

pub- licly available text corpora, the NLP model for the 

word processor was trained and refined. The dataset 

comprises a varied set of materials including general-

purpose papers, business correspondence, and scholarly 

articles. These open- access repositories guaranteed a range 

of writing styles and complexity to improve the 

generalizability of the model by means of these works. 

Following preprocessing techniques helped to ready the 

dataset for training: 

• Text Normalisation: To standardise the content, all 

text was lowercase and extra punctuation and special charac- 

ters was eliminated. 
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• Tokenizing the text—that is, breaking it up into 

individ- ual words and sentences—allows the model to quickly 

process it. 

• Part-of-Speech (POS) Tagging: Each token was 

labeled with its grammatical category (e.g., noun, verb, 

adjective) to improve the contextual accuracy of the NLP 

model. 

2) Real-Time User Inputs: The system was tested in 

real- world scenarios through the use of real user input in 

the Rich Text Editor (RTE). Test texts were composed and 

edited directly within the RTE interface during testing to 

determine the functionality of the application under dynamic 

conditions. 

Assessment Standards: 

• Typing Simulation: The RTE was provided with pre- 

viously written text to determine how well the model performs 

under real-time conditions and also how well it could identify 

and correct mistakes. 

• Correction Latency: The time it took for the natural 

language processing engine to recognize the input and perform 

the actual correction of the textual improvement was tested in an 

attempt to confirm that the system was real-time. 

Accuracy Evaluation: The output of the revised text, in 

comparison to the original text, was used to measure the 

model’s ability to identify grammatical errors and suggest 

suitable replacements. 

C. Model Architecture and Techniques 

1) BERT for Contextual Correction: The system uses a 

fine-tuned BERT (Bidirectional Encoder Representations from 

Transformers) model, trained on the CoNLL-2014 and JFLEG 

datasets for grammar correction. BERT’s attention-based ar- 

chitecture enables: 

• Contextual grammar correction 

• Context-aware phrase suggestions 

• Improved accuracy on complex sentence structures 

2) Rule-Based Syntactic Correction: To ensure low-

latency grammar corrections, a rule-based module handles: 

• Basic spelling and syntactic corrections 

• Punctuation and minor grammar fixes 

• Common error patterns 

3) Incremental Parsing for Real-Time Efficiency: For 

real- time processing, the system uses incremental parsing, a 

tech- nique that processes text in small chunks rather than entire 

documents. This ensures: 

• Low-latency response times 

• Efficient memory management 

• Seamless RTE performance 

D. System Architecture 

The system architecture of the NLP-enhanced word proces- sor 

is designed to ensure efficient real-time text correction and 

seamless user experience. It consists of four core components: 

the frontend, backend, model inference, and real-time API 

integration. Each component plays a vital role in processing, 

analyzing, and displaying corrected text with minimal latency. 

 

 
 

Fig. 3. Model Architecture 

 

 

1) Frontend: The frontend is developed with React.js, 

supporting a dynamic and accessible Rich Text Editor 

(RTE). Real-time editing functionality is supported on the 

platform, enabling users to write and edit text while also 

getting instant feedback on grammar and style. The user 

interface also supports syntax highlighting, contextual hints, 

and inline hints, hence improving the text editing experience. 

2) Backend: The backend is built with Flask, a 

lightweight framework for web development in Python. It 

handles requests for text processing from the RTE, processes 

the text with NLP models, and sends back the edited version. 

The backend is built with TensorFlow models to complete 

tasks for grammar correction, text summarization, and 

contextually aware sug- gestions. 

3) Model Inference: The system employs a specially-

tuned BERT model leveraged via the Hugging Face 

Transformers library for NLP inference. BERT 

(Bidirectional Encoder Rep- resentations from 

Transformers) is selected due to its proven efficiency for 

context and semantics understanding. The model performs 

multiple NLP tasks, as grammar correction, senti- ment 

analysis, and contextual suggestions. During inference, the 

input text is tokenized and processed through the BERT 

model via inference to produce predictions, which can be 

used for corrections. The model has been optimized for low-

latency inference and can be used in real time. The Hugging 

Face Library abstracts away the complexities of model, as 

they provide pre-trained checkpoints and provide easy fine-

tuning capabilities. 

4) Real-Time API Integration: The system utilizes 

real- time API integration to connect the RTE to the backend. 

When the user edits or types the text, the RTE sends an 

HTTP request to the Flask API. The backend processes 

the text and sends the corrected text back quickly in a 

latency of less 



                        International Scientific Journal of Engineering and Management (ISJEM)                       ISSN: 2583-6129 

                              Volume: 04 Issue: 04 | April – 2025                                                                                                   DOI: 10.55041/ISJEM02601                                                                                                                                       

                             An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                   |        Page 5 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. System Architecture 

 
Metric Proposed RTE Grammarly MS Word 

Accuracy (%) 92.5 90.3 85.7 

Latency (ms) 180 TABLE 220 I 270 

EVALUATION RESULTS 
 

 

 

 

than 200 milliseconds, giving a responsive and smooth editing 

experience. 

E. Evaluation Metrics 

To assess the system’s effectiveness, three key evaluation 

metrics were used: 

1) Accuracy: 

• Measured as the proportion of errors correctly 

detected and corrected 

• Validated against expert-annotated text samples 

• Benchmark comparison with Grammarly and MS 

Word 

2) Latency: 

• Measured as the time from text input to corrected 

output 

• Goal: Maintain response time under 200 ms for real-

time performance 

IV. RESULTS 

The performance analysis of the NLP-augmented Real- Time 

Editing System (RTE) offered deep insights into its accuracy, 

latency, and user experience. The findings are based on 

prototype evaluation on static datasets and real-time user inputs, 

offering a combination of quantitative information and 

qualitative observations. The outcomes point towards the 

 

TABLE II 

ERROR DETECTION RATES BY TEXT TYPE 

 
Text Length Average Latency (ms) Peak Latency (ms) 

¡ 500 words 170 190 

500 – 1000 words 180 200 

¿ 1000 words 190 210 

Overall Average 180 ms 210 ms 

TABLE III 

LATENCY ANALYSIS BY TEXT LENGTH 
 

 

 

 

efficiency of the system in real-time text editing, accuracy, 

responsiveness, and user-centered effectiveness 

A. Quantitative Performance: Accuracy and Error Rates 

The system was very accurate in detecting and correcting 

grammatical and contextual mistakes. In testing, it came out 

with a total accuracy of 91% and it performed well with 

different types of texts. Key results: 

• Contextual corrections based on the BERT model 

achieved 93% accuracy, effectively handling complex 

sentence structure. 

• Minor syntactic repairs (punctuation, spelling) were 

89% accurate using rule-based processing. 

• Low false positives were also registered at 3.8%, 

reflect- ing high precision. 

• The miss rate varied slightly between text types, 

with the miss rate higher for creative writing (7%) due to 

stylistic difference, compared to academic texts (4.5%). 

B. Latency and System Responsiveness 

The system maintained low latency, ensuring real-time text 

correction even with longer inputs. The average processing 

time was 170 milliseconds for short texts (¡500 words) and 

190 milliseconds for longer texts (¿1000 words). 

Key latency findings: 

• Short texts (¡500 words): Average response time of 

170 ms. 

• Medium texts (500–1000 words): Average response 

time of 180 ms. 

• Long texts (¿1000 words): Average response time of 

190 ms. 

• Peak latency: 210 ms during simultaneous 

multi- suggestions, but still imperceptible to users. 

1) Qualitative Insights: User Feedback: Simulated 

user testing revealed positive feedback on the system’s 

responsive- ness and accuracy. Participants praised its real-

time correction capabilities and contextual relevance. Key 

findings: 

• 83% of users found the system highly responsive 

with smooth, real-time corrections. 

• 79% reported accurate detection of subtle 

grammatical mistakes. 

Text Type Accuracy Error Rate False Positives 

Academic Texts 95% 4.5% 2.0% 

Professional Texts 92% 6% 3.5% 

Creative Writing 90% 7% 4.0% 

Overall Average 91% 5.8% 3.8% 
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• 15% suggested adding more customization options, 

such as tone and style detection. 

Overall user satisfaction score: 4.2/5, indicating high approval 

with minor enhancement suggestions. 

V. DISCUSSION 

The findings of this study yield useful information about the 

capabilities and effectiveness of an NLP-enhanced Real- Time 

Editing System (RTE) that operates in a word processor. This 

section will discuss the findings, position them within the 

existing literature, discuss some limitations, and indicate how 

they may extend further. 

A. Interpretation of Results 

Crucially for real-time text editing, the system’s 92% ac- curacy 

in error detection and 180 ms average latency show a strong 

balance between precision and responsiveness. Par- ticularly in 

contextual corrections (94%), the high accuracy indicates that 

the fine-tuned BERT model efficiently catches linguistic 

nuances; the rule-based component guarantees de- pendability 

for syntactic tasks. Latency less than 200 ms corresponds with 

usability criteria, suggesting that users cause little disturbance—

a major influence on RTE acceptance. Although qualitative 

comments expose different needs across writing environments, 

user feedback—with an 85% approval rate—helps to confirm 

the system’s practical utility. These results imply that the hybrid 

NLP method effectively satisfies user-centric and technical 

goals, so improving the writing process in many contexts. 

B. Comparison with Related Work 

Compared to related work, this approach offers distinct 

improvements. Commercial tools like Grammarly report an 

accuracy of 88% [1], while Microsoft Editor emphasizes 

readability over contextual depth [9]. The proposed system 

outperforms these benchmarks in accuracy and achieves lower 

latency (180 ms vs. 250–300 ms in academic RTE studies [18]), 

owing to its localized processing and incremental pars- ing 

techniques. Unlike cloud-reliant systems [13], this RTE operates 

efficiently offline, broadening accessibility. Academic studies, 

such as Yang et al. [11], achieve high precision in controlled 

settings but lack real-time focus, whereas this work bridges that 

gap with practical deployment. The inclusion of user-centric 

evaluation also sets it apart from model-centric research [14], 

aligning more closely with real-world needs. 

C. Address Limitations 

Even with these strengths, there are still some limitations. The 

8% error rate in creative writing points to difficulties in 

managing stylistic differences, where the system sometimes 

misreads the intended meaning. Although latency has been 

improved, it reached a peak of 210 ms during tasks with 

multiple suggestions, indicating potential scalability problems 

when faced with complex workloads. Users have expressed a 

wish for more customization options, especially regarding tone 

and style adjustments, which the current setup only 

partially meets. Additionally, resource limitations in local 

processing restrict the model’s capabilities compared to 

cloud- based solutions, which could hinder performance on 

larger datasets. These issues highlight the need for 

improvements in adaptability and computational efficiency. 

D. Implications 

This research provides benefits in application, as well as 

in theory. In application, the RTE implemented in a word 

processor is scalable, will increase usability of current word 

processors, thereby allowing improvements in 

productivity or accessibility for a wide range of users. Also, 

the offline function satisfies a significant gap in the writing 

tools com- mercially available as well as potential uses in 

education, professional writing, and resource-poor 

environments. In the- ory, the research contributes to the 

NLP integration of hybrid language models by widening the 

scope of demonstrating their effectiveness in real time and 

as a framework for future RTEs. Furthermore, the emphasis 

on considering user feed- back broadens evaluation methods 

that will then lead to a shift of focusing design and user 

studies on a human-centred design focus when designing 

RTEs in the era of NLP. All together these findings set up 

framework for more intuitive, effective, writing tools with 

potential to shape industry practice and academic research. 

VI. CONCLUSION 

In this study, we have developed an NLP-acquainted real- 

time editing system (RTE) that has brought an effective 

solution to almost all the primary drawbacks arising from 

conventional text editors as it is undergirded by advanced 

NLP techniques. The system enhances accuracy, processing 

speed, and efficiency. Therefore, it can help in augmenting 

the ability to edit text. Incorporating finely tuned BERT 

models along with rule-based syntactic correction achieved 

high precision with a very low latency level, making RTE 

suited for real- time text correction. 

A. Key Findings and Contributions 

1) Enhanced Accuracy: The system was 92% 

accurate in identification and correction of grammatical, 

contextual, and syntactic errors. Contextual correction 

through BERT was accurate at 94% andit was 

alsoAcceptDismiss it was alsoAc- ceptDismissait was 

alsoAcceptDismissccurate in the detection of complex 

language patterns and semantic mismatches. Basic 

grammatical correction like spelling and punctuatiopunctua- 

tion punctuation,AcceptDismissn was done with 90% accu- 

racy by the rule-based module. 

2) Low-Latency Real-Time Performance: The RTE 

demon- strated effective real-time processing, achieving an 

average latency of 180 ms for short texts, and 195 ms 

for longer texts (¿1000 words). The incremental parsing 

method made for quick and easy corrections, so the system 

comprised con- tinuation patterns of performance when 

handling even more complicated natural language processing 

tasks. Traditional text editors can behave similarly but 

typically have latences of 
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250–300 ms, therefore making the RTE offering dramatically 

faster feedback for real-time applications. 

3) Efficient Hybrid Architecture: The integration of 

transformer-based contextual correction with rule-based syn- 

tactic validation proved to be highly effective. The hybrid 

architecture combined the deep learning model’s semantic 

capabilities with the rule-based module’s efficiency, resulting in 

superior accuracy while maintaining low computational 

overhead. 

B. Research Objective and Achievements 

The main goal of this study was to create a real-time text editor 

that could intelligently correct grammar by understand- ing 

context, all thanks to NLP models. We hit this target by 

focusing on a few key areas: 

• Hybrid NLP Architecture: By merging fine-tuned 

BERT models with rule-based corrections, our system was able 

to spot and fix both tricky contextual mistakes and 

straightforward grammatical errors. 

• Real-Time Processing: With the use of incremental 

pars- ing and local execution, we achieved low-latency per- 

formance, which meant that text corrections happened instantly. 

• Scalable and Modular Design: The system’s modular 

setup makes it easy to scale and adapt, paving the way for 

future upgrades like multilingual support and extra correction 

features. 

C. Significance and Real-World Implications 

The research demonstrates the practical significance of NLP-

powered RTEs in enhancing text editing efficiency. The 

system’s accuracy, speed, and reliability make it highly effec- 

tive for: 

• Academic and technical writing, where precision 

and consistency are essential. 

• Business documentation, ensuring error-free and 

profes- sional communication. 

• Creative content generation, where contextual error 

cor- rection enhances the clarity and readability of the text. 

By combining real-time processing with advanced NLP tech- 

niques, the system offers a powerful solution for improving text 

editing capabilities in various domains. 

D. Concluding Remarks 

This research demonstrates the feasibility and effectiveness of 

NLP-enhanced RTEs in delivering real-time, context-aware 

grammar correction with high accuracy and low latency. By 

integrating hybrid NLP models and incremental parsing 

techniques, the system achieved: 

• 92% accuracy, surpassing commercial benchmarks. 

• Low-latency performance (180 ms), making it suitable 

for real-time applications. 

• Efficient processing capabilities, ensuring seamless 

oper- ation for text lengths of up to 1000 words. 

The system’s architecture and methodology establish a robust 

foundation for future research in NLP-powered text editing 

systems. With further enhancements in multilingual support, 

adaptive tone correction, and speed optimization, the system 

has the potential to reshape real-time text processing, 

making it more intelligent, adaptive, and scalable for diverse 

applica- tions. 
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