
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05021

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

SafePass: A Rust-based Password Management Wallet Solution using Intel

SGX

Abhijeet Sonar

Mumbai, IN

abhijeetsonar.us@gmail.com

CTO

Omkar Wagle

San Jose, CA

ov.wagle@gmail.com Software

Engineer

Aishwarya Lonarkar

Dallas, TX

aishwaryalonarkar@gmail.com

Full Stack Engineer

Abstract—SafePass is a password manager wallet that

leverages Intel Software Guard Extensions (SGX) technol-

ogy and the Rust programming language to provide secure

storage and management of user passwords. The applica-

tion features a secure enclave implemented in Rust, which

uses a hashmap-based data storage system to support var-

ious password management operations such as username-

password addition, updating existing passwords, removing

particular username and password entries, clearing the

entire wallet, recommending password and finding pass-

word by username. The enclave employs SGX’s hardware-

based memory encryption and access control features to

ensure that sensitive data is protected against unauthorised

access and tampering. In addition to the aforementioned

security mechanisms, the password manager application also

incorporates two-factor authentication (2FA) within the

secure enclave implemented in Rust. This design choice

enhances the application’s overall security posture by em-

bedding 2FA within the enclave itself, effectively isolating

the authentication mechanism from potential attackers and

mitigating risks associated with credential theft or abuse.

Overall, this password manager application showcases the

capabilities of SGX and Rust in delivering secure and

reliable password management solutions. By incorporat- ing

2FA and hardware-based security mechanisms, the

application effectively protects sensitive data from security

threats such as side-channel attacks, memory tampering,

and code injection, making it an invaluable contribution to

the field of secure computing.

Index Terms—Intel SGX, Rust, Enclave, Password Man-

ager, 2FA, Encryption, Secure Data, Memory Leak

I. INTRODUCTION

Password management is an essential practice in

today’s digital age. Weak passwords or the reuse

of passwords across multiple accounts can lead to

devastating consequences such as identity theft,

financial fraud, and even the compromise of national

security. Here are some facts that underscore the

importance of password security: According to a

report by SplashData, the top three most commonly

used passwords in 2020 were ”123456,” ”password,”

and ”123456789.” This demonstrates that many

people still use weak and easily guessable pass-

words, leaving them vulnerable to cyberattacks. A

study by Verizon found that 80% of hacking-related

data breaches in 2019 were caused by weak or reused

passwords. The 2019 State of Password and

Authentication Security Behaviors Report revealed

that 59% of respondents use the same password

for multiple accounts, further highlighting the need

for better password management practices. One

solution to the password security problem is the use

of password managers, which securely store and

manage user passwords. SafePass is a password

manager that leverages Intel Software Guard Exten-

sions (SGX) technology and the Rust programming

language to provide secure password management.

The SafePass application features a secure enclave

implemented in Rust, which uses a hashmap-based

data storage system to support various password

management operations. The application uses a

combination of cryptographic techniques to ensure

that the stored data is secure. When a user adds or

updates a password, the application encrypts the

password using XOR encryption with a secret key

derived from a user-defined passphrase. The

application then stores the encrypted password in the

secure enclave, ensuring that the password re- mains

confidential and protected from unauthorized

access. Furthermore, the application uses SGX’s

sealing feature to protect the encrypted password

against tampering. When a user seals a password,

SGX creates a sealed data structure that can only be

unsealed by the same enclave instance that created it.

This prevents unauthorized tampering of the

password by other enclaves or applications. SafePass

also includes a password recommendation feature

that generates strong passwords for users. The

application uses a combination of lowercase

characters, uppercase characters, numbers, and sym-

bols to create complex passwords that are diffi- cult

to guess. Users can customize the password length

and character types to suit their needs. In conclusion,

SafePass is a password manager that leverages the

security features of Intel SGX and the Rust

mailto:abhijeetsonar.us@gmail.com
mailto:ov.wagle@gmail.com
mailto:aishwaryalonarkar@gmail.com

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05021

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

programming language to provide secure and reliable

password management solutions. The application’s

design choices, such as incorporating 2FA and

hardware-based security mechanisms, ef- fectively

protect sensitive data from security threats such as

side-channel attacks, memory tampering, and code

injection. By using cryptographic tech- niques to

ensure the confidentiality and integrity of stored data,

SafePass provides a secure password management

solution for users in today’s digital age.

II. BACKGROUND AND RELATED WORK

Password managers are essential tools for users to

store and manage their login credentials securely.

Several password manager applications have been

developed using various programming languages and

security technologies. Recently, there has been

growing research interest in using Rust program-

ming language for developing secure password man-

agers. Rust is a systems programming language that

emphasizes safety, performance, and concurrency.

Rust’s ownership and borrowing model provides

memory safety and thread-safety guarantees that are

crucial for developing secure software. Additionally,

Rust’s community has developed various libraries

and tools that aid in building secure and reliable

applications.

Another area of research interest in password

managers is the use of Intel SGX technology. SGX

provides a secure execution environment for appli-

cations, protecting the confidentiality and integrity

of the application’s code and data. Several pass- word

manager applications have leveraged SGX to provide

secure storage and management of user passwords.

SGX’s memory encryption and access control

features protect sensitive data from unau- thorized

access and tampering. Overall, the use of Intel SGX

and Rust together for password man- ager

applications is a relatively new and growing research

area. Researchers are exploring the ca- pabilities of

these technologies to provide secure and reliable

password management solutions. Sev- eral recent

studies have focused on the design and

implementation of password managers that leverage

SGX and Rust’s security features, demonstrating their

potential for protecting sensitive data from security

threats.

III. APPROACH AND DESIGN

SafePass is a password manager application that is

based on three main principles: Intel Software

Guard Extensions (SGX) technology, the Rust pro-

gramming language, and multi-factor authentication

(MFA). These three principles are the foundation

upon which SafePass is built, providing users with a

secure and reliable password management solution.

The design choices of SafePass demonstrate its

focus on security and reliability. In Figure 1, the

basic flow of operation is depicted, where SafePass is

bifurcated into two parts, namely, the trusted and

untrusted part. The application begins at the entry

point of the untrusted part, which then communi-

cates with the trusted part or enclave. Following this,

the authentication process takes place within the

enclave, and the outcome of successful or failed au-

thentication is then transferred to the main program

or the untrusted part. Upon clearing the one-time-

password (OTP) verification process, the user gains

access to their wallet, which is stored within the

secure enclave. Once inside the wallet, the user can

avail of several options, such as writing username-

password combinations, reading data from the wal-

let, adding new data to the wallet, removing an

entry from the wallet based on the user ID, clearing

the entire wallet, resetting the master password of

the wallet, and recommending strong and secure

passwords. These options are made available to the

user from the untrusted part of the code. After the

user selects an operation, all the activities take place

within the enclave, which is a highly secure and

trusted environment. All computations and actions

are performed in the trusted part of the code, even the

input received from the user is handled by the

trusted code using buffers and memory safety

operations. After the completion of all actions and

error handling within the enclave, the main control of

the program is returned to the untrusted part of the

code. Thus, this is the basic overview of the design

architecture of SafePass.

The architecture of SafePass uses the trusted

computing base (TCB) concept by dividing the

application into two parts: the trusted and untrusted

parts. The trusted part is implemented using In- tel

Software Guard Extensions (SGX) technology, which

creates a secure enclave for the storage and

management of the user’s passwords. All the

sensitive operations, such as password encryption,

decryption, and manipulation, take place within the

secure enclave, which is an isolated and protected

environment that cannot be accessed or tampered

with by any untrusted code. On the other hand, the

untrusted part of the application is responsible for

handling user input and providing an interface for the

user to interact with the secure enclave. This

approach enhances the security of the application by

isolating the trusted code from the untrusted code and

making it invulnerable to external attacks.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05021

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

Fig. 1. Overview of SafePass

IV. IMPLEMENTATION

A. Environment Setup

The Docker environment provided by

Apache/Incubator-Teaclave-SGX-SDK is a pre-

configured development environment that is used

to build and test Rust SGX-based applications

quickly and easily. It provides a complete set of tools,

libraries, and dependencies necessary for building

SGX-enabled applications in a secure and isolated

environment. This approach saves developers from

having to install and configure all the necessary

components themselves, which can be a time-

consuming and error-prone process. Overall, the

Docker environment provided by Apache/Incubator-

Teaclave-SGX-SDK simplifies the development and

testing of Rust SGX-based applications, making it an

ideal choice for our SafePass implementation.

B. Dependencies

In the context of the safepass project, there are a

number of dependencies that must be installed and

configured before the application can be built and

run. These dependencies include various li- braries,

frameworks, and other software packages that

provide essential functionality to the appli- cation.

Some of the most important dependen- cies used in

safepass include sgx tstd, sgx rand, sgx serialize,

and sgx tseal, among others.

The sgx tstd dependency is an important com-

ponent of the Rust SGX SDK. It is a library that

provides a standard set of functions and types for use

in SGX enclaves. This library is specifically designed

to work within the SGX environment, providing

access to essential functionality like mem- ory

allocation and management, I/O operations, and

more. By using this library, the safepass project is

able to leverage the power and flexibility of Rust

while ensuring that all code runs securely within the

SGX environment.

The sgx rand dependency is another key compo- nent

of the Rust SGX SDK. This library provides a

cryptographically secure random number generator

for use in SGX enclaves. It is designed to produce

random numbers that are both unpredictable and non-

repeating, making it an essential component of any

application that requires secure random number

generation. The safepass project uses this library to

generate unique encryption keys and other sensitive

data. The sgx serialize and sgx tseal dependencies

are used to provide serialization and sealing func-

tionality for the safepass application. Serialization is

the process of converting data structures into

aformat that can be easily stored or transmitted, while

sealing is the process of encrypting and protecting

data to prevent unauthorized access. Together, these

libraries allow the application to securely store user

data, protecting it from potential security threats.

The ring library is another important component of

the safepass project. This library provides a set of

cryptographic primitives and operations that are

essential for building secure applications. It includes

support for symmetric encryption, public key en-

cryption, digital signatures, and more. By using this

library, the safepass project is able to implement a

range of advanced security features that help to

ensure the privacy and confidentiality of user data.

Overall, the dependencies used in the safepass

project are essential components that provide critical

functionality and security features. By leveraging

these libraries and frameworks, the project is able

to build a robust and secure application that is well-

suited for storing and managing sensitive user data.

C. Untrusted Code

The main entry point of wallet application starts in

untrusted environment. And with untrusted code.

Here term untrusted is used in a context mean- ing

code running outside of the enclave. To start diving

more into untrusted source, it is designed and written

in a such way that it first defines a struct called ”sgx

errlist t” which holds three fields

- ”err”, ”msg” and ”sug”. It then declares an array of

”sgx errlist t” objects called ”sgx errlist” which

holds error codes and messages related to the SGX

enclave used in the project.

Each element of the ”sgx errlist” array contains an

”err” field which is an SGX error code, a ”msg” field

which is a string describing the error and a ”sug”

field which provides a suggestion on how to address

the error. The ”sgx errlist” array contains a list of

common errors that can occur when creating and

managing an SGX enclave. These errors include

issues with memory allocation, power transitions,

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05021

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

invalid enclave metadata and many others. The array

provides a convenient way to look up error mes-

sages based on the error code returned by an SGX

function call. The ”print error message” function in

the code utilizes this array to lookup and print the

appropriate error message and suggestion for a given

error code. Later, untrusted source initializes an

enclave using Intel SGX technology, which cre- ates

an isolated computing environment designed to

provide enhanced security and privacy for sensitive

applications. The function sets up a launch token,

which contains data needed for the enclave launch,

and creates the enclave itself. Then, main function of

a secure wallet application designed to manage user

interface part of wallet application. It ensures that the

data is processed and stored securely inside an

enclave.

The main starts by initializing the enclave. If the

enclave fails to initialize, the program exits. Once the

enclave is initialized, the control is passed to an

enclave for user authentication where user is asked

to enter their email address and master password. The

enclave verifies the provided email address and

returns a status code indicating success or failure. If

the email verification is successful, the application

generates a One-Time Password (OTP) and sends it

to the user’s email address. The user is prompted

to enter the OTP, and if it matches the generated

one, the user is granted access to the wallet’s

functionalities. The main loop of the application

allows the user to interact with the wallet by entering

various commands like write, read, find, remove,

clear, reset, recommend and exit. The loop continues

until the user inputs the ’exit’ command. Each

command triggers a corresponding function call

inside the enclave, ensuring that the sensitive data

remains secure during processing. Finally, after the

user exits the application, the enclave is de- stroyed,

releasing the resources allocated during its lifetime.

D. Trusted Code

Figure 2 illustrates the fundamental architecture of

the SafePass application. The primary entry point of

the program is through the user interface, which

resides in an untrusted environment. The applica-

tion’s core functionality and secure operations are

encapsulated within an enclave. The main control of

the program is passed to the enclave based on user

input, and changes are made to the wallet accord-

ingly. The architecture is designed to protect sensi-

tive data and operations by isolating them within the

enclave. This separation ensures that any potential

security breaches in the untrusted environment do not

compromise the integrity and confidentiality of the

data and operations within the enclave. The enclave

serves as a trusted execution environment,

implementing secure functions that can be invoked by

the untrusted part of the application. These functions,

designed to work in tandem with the user interface,

perform cryptographic operations, data serialization

and deserialization, and secure file access. By doing

so, the enclave ensures the safe processing and

storage of sensitive information, such as user

credentials. Communication between the untrusted

user interface and the trusted enclave occurs through

a secure channel, with calls made to specific

functions exposed by the enclave. These functions are

carefully designed to ensure that data passing in and

out of the enclave is securely man- aged and

protected against potential threats.

The main functionality of the enclave includes

managing user credentials and performing secure

operations on sensitive data. It relies on several

key concepts from Intel SGX, such as sealing and

unsealing data, file system access, and cryptographic

operations. Additionally, the code uses mutexes to

manage concurrent access to shared resources,

providing synchronization and mutual exclusion for

critical sections of the code. One of the core com-

ponents in this code is a struct called FileData, which

represents the data being managed by the application.

This struct contains a HashMap to store key-value

pairs of data. The code utilizes serial- ization and

deserialization to facilitate the reading and writing of

data to and from the secure file system. This is

achieved using the sgx serialize and sgx serialize

derive crates, which allow for the conversion of

complex data structures into binary formats and vice

versa. The enclave code provides a set of functions

that can be called from the untrusted part of the

application through the use of the #[no mangle]

attribute and the pub extern ”C” function declaration.

These functions enable the untrusted part of the

application to communicate with the enclave and

request operations on the sen- sitive data. One of the

crucial functions provided by the enclave is

responsible for securely verifying the user’s email

and password. The function reads the user’s email

and password from the secure wallet, decrypts the

stored password, and compares it to the user-provided

password. If the passwords match, the function

returns a success status, allowing the user to proceed

with further operations.

Another important function which allows the user to

store new key-value pairs in the Wallet struct. The

function first reads the user’s input for a key

(username) and value (password), then opens the

wallet containing the existing data. It then deserial-

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05021

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

izes the wallet’s content into a wallet instance, adds

the new key-value pair, serializes the updated data,

and writes it back to the wallet.

In the next part of the code is responsible for opening

the secure wallet and reading its contents. Before the

reading process, the wallet is unsealed, which

decrypts the data and makes it accessible. The wallet

is read in chunks and stored in a buffer, which is then

used to decode the data into a structured for- mat.

This process ensures that the data is accessed

securely and efficiently, minimizing the potential for

unauthorized access or corruption. If any issues arise

during the reading, unsealing, or decoding pro- cess,

appropriate error messages are displayed, and the

operation terminates. The later part of the code

focuses on adding new data to the secure wallet. It

first reads the existing data from the wallet, unseals it,

and decodes it into a structured format. Then, the user

is prompted to provide additional input, such as a

new username and password. Once the new data has

been collected and validated, it is added to the

existing data structure. Next, the updated data

structure is serialized and encoded before being

written back to the secure wallet. Before the writing

process, the wallet is sealed, which encrypts the data

and ensures its confidentiality. This process ensures

that the new data is securely integrated with the

existing data and that the updated wallet maintains its

integrity. If any issues arise during the encoding,

sealing, or writing process, appropriate error

messages are displayed, and the operation terminates.

Then, a success message is displayed to the user,

indicating that the data addition has been completed

successfully. The code then proceeds to read and

unseal the updated wallet to confirm that the new data

has been properly integrated and stored securely.

In the subsequent section of the code, two addi- tional

operations are introduced: deleting data and searching

for data by key. Both operations maintain the security

and integrity of the data stored within the secure

wallet.

The first operation focuses on deleting data from the

wallet. It begins by opening the wallet, reading its

contents, and decoding the data into a structured

format. The user is then prompted to provide the key

corresponding to the data they wish to delete. If the

key is found in the wallet, the associated data is

removed, and the updated data structure is serial- ized

and encoded before being written back to the wallet.

Throughout this process, appropriate error messages

are displayed if any issues arise. Upon successful

completion of the deletion operation, a success

message is displayed to the user. The second operation

allows users to search for data within the wallet using

a specific key. The process is similar to that of the

deletion operation in terms of opening the wallet,

reading its contents, and decoding the data into a

structured format. The user is prompted to enter the

key corresponding to the data they wish to find. The

code then searches for the key within the wallet’s

data structure.

If the key is found, the associated data is dis- played

to the user. If the key is not found, an error message

is displayed to indicate that the search was

unsuccessful. This operation is beneficial for users

who need to locate specific information within the

secure wallet without modifying its contents. In both

operations, the secure wallet’s data is accessed and

managed in a manner that ensures its confidentiality

and integrity. By employing encryption, decryption,

and secure data handling techniques, the code en-

sures that sensitive user data remains protected from

unauthorized access or manipulation.

In the following part of the code, three addi- tional

functions are implemented to enhance the secure

wallet application. These functions aim to provide

more flexibility to users while ensuring the

protection of their sensitive information. The next

function allows users to clear the contents of the

wallet, essentially deleting all stored data. It does

so by creating a new wallet file with empty

content, overwriting any previous content that may

have existed. Once the wallet is cleared, a success

message is displayed to the user, indicating that

the operation has been successfully completed. This

function is useful for users who wish to remove all

their stored data from the wallet in a single action.

The next function focuses on changing the master

password for the wallet. This operation involves

reading the existing credentials, decoding the data,

and prompting the user to enter a new, valid pass-

word. The updated password must meet specific

criteria, such as a minimum length and the inclusion

of numbers and symbols. Once a valid password is

provided, it is encrypted using a secret key and

XOR operation to maintain its confidentiality. The

encrypted password is then updated within the data

structure, which is subsequently serialized, encoded,

and written back to the credential stor- age file.

Upon completion, a success message is displayed to

the user. The next function generates a secure

password recommendation for the user. It creates a

16-character password using a combina- tion of

lowercase and uppercase letters, numbers, and

symbols. The password is generated using a

cryptographically secure random number generator to

ensure its strength and unpredictability. Once the

password is generated, it is displayed to the user as a

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05021

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

recommended option for securing their sensitive data.

Throughout all these operations, the wallet sealing

and unsealing processes are employed to safeguard

the data stored within the wallet. Sealing refers to the

encryption and integrity protection of the data before

it is stored, while unsealing reverses this process to

make the data readable and usable by the application.

By implementing these processes, the secure wallet

application ensures that sensitive user information

remains confidential and protected from unauthorized

access or tampering.

In conclusion, these additional functions provide

users with more flexibility and control over their

secure wallet. The ability to clear the wallet, change

the master password, and receive secure password

recommendations helps users manage and protect

their sensitive data more effectively. By incorporat-

ing wallet sealing and unsealing processes, the ap-

plication maintains the security and integrity of the

stored information, fostering trust and confidence

among its users.

E. Enclave configuration

In a typical enclave-based application, several

components interact to ensure the confidentiality, in-

tegrity, and availability of sensitive data. In this case,

the components include the source code (lib.rs), the

private key file (enclave private.pem), the build

configuration file (cargo.toml), the enclave config-

Fig. 2. SafePass Architecture

uration file (enclave.config.xml), and the Makefile.

Each of these components plays a crucial role in the

proper functioning of the enclave application.

Apart from main source code file, it consists of

enclave private.pem file, this is the private key file

associated with the enclave application. It is used for

signing the enclave during the build process, which in

turn ensures the integrity of the enclave and its code.

The private key should be kept con- fidential and not

shared with unauthorized parties to maintain the

security of the enclave. The corre- sponding public

key, embedded in the enclave, is used to verify the

enclave’s signature and establish trust between the

enclave and the host application. Then,

enclave.config.xml file provides essential pa-

rameters for the enclave, such as the stack size, heap

size, and security settings. It also defines the trusted

execution environment’s properties, such as whether

debugging is allowed, the product ID, and the

security version. The Intel SGX SDK uses this file to

generate the enclave’s signature and configure the

enclave during the build process. It helps tailor the

enclave’s properties to the specific needs of the

application and its security requirements.

V. CHALLENGES

Technical challenges were faced when working with

SGX technology. SGX technology has some

limitations that can affect the development process.

One of the major challenges was the limited mem-

ory available to the enclave, which restricted the size

of the data that could be stored in the enclave. This

led to the development of several strategies to

optimize memory usage, such as breaking data into

smaller chunks, compressing data before storing, and

optimizing data structures. Another technical

challenge was related to the use of external libraries

within the enclave. Since the enclave operates in a

secure environment, it has limited access to external

resources. This made it challenging to integrate some

libraries.

Moreover, during the development phase, one of the

challenges faced was the limited availability of

crates inside the enclave while programming in Rust.

It was observed that many useful crates were not able

to be utilized because of the conflict arising from their

dependency on std::io. This resulted in a panic error

and it was indicated that the dependent crate was

using std::io which was in conflict with sgx tstd.

As a result of this issue, it was not possible to use

many of the available crates. Attempts were made to

download crates on the local machine and resolve the

errors by replacing std::io with sgx tstd. However,

this approach proved to be complex and time-

consuming and was not compatible with the current

development plan. Therefore, it was decided to

implement the required functionalities within the

enclave in Rust from scratch without using certain

crates. This led to the development of a program that

avoided the use of problematic crates and utilized

alternative functionalities to achieve the desired

outcomes. The program was developed in a manner

that minimized the dependence on external crates,

and the required functionalities were implemented

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05021

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

directly in Rust code within the enclave.

Conceptual challenges were faced during the de-

velopment of the project’s functionality. One of the

major challenges was related to the design of the

secure wallet. Since the wallet was designed to store

sensitive data, it was crucial to ensure the confiden-

tiality and integrity of the data. This required the

implementation of several security measures, such as

encryption, hashing, and secure communication

between the client and the enclave. Another con-

ceptual challenge was related to the implementation

of the password management functionality. Since the

password is the primary means of securing the

wallet, it was crucial to implement a robust password

management system. This required the

implementation of several features, such as pass-

word validation, password strength estimation, and

password recommendation.

In conclusion, the development of the secure wallet

project faced several challenges, both tech- nical and

conceptual. Overcoming these challenges required a

deep understanding of SGX technol- ogy,

cryptography, and secure software development

practices.

VI. LIMITATIONS

Despite its robust security mechanisms, the SafePass

password manager application has a few limitations.

Firstly, due to its reliance on SGX hard- ware, the

application may be subject to limitations posed by the

hardware itself. For instance, SGX processors may

require specialised drivers or BIOS configurations,

which may not be readily available on some systems.

This may limit the application’s portability and

compatibility with certain hardware configurations.

Secondly, the Rust programming language, while

known for its security and performance advantages,

has a smaller developer community compared to

more established programming languages such as C

and Java. This may limit the availability of third-

party libraries and tools for the development of

secure enclave applications in Rust, resulting in

longer development cycles and potentially limiting

the application’s functionality. Thirdly, the use of

hardware-based security mechanisms such as SGX

can incur a performance penalty, particularly during

the initialisation of the secure enclave. This can result

in slower performance for certain operations,

particularly those involving large amounts of data or

complex computations.

Finally, while the application’s reliance on hardware-

based security mechanisms and 2FA en- hances its

overall security posture, these mecha- nisms do not

provide complete protection against all forms of

cyber threats. For instance, the appli- cation may still

be vulnerable to social engineering attacks, such as

phishing or impersonation attacks, which can

compromise user credentials even with strong

security mechanisms in place. As such, users must

still exercise caution and adopt security best practices

when using the application.

VII. EVALUATION

The evaluation of SafePass was carried out through

various testing scenarios, including unit testing and

integration testing. The unit testing was conducted to

verify the functionality of individual functions within

the enclave, whereas the integration testing focused on

testing the interoperability of different components of

the application. The test- ing revealed that the

application was robust and free from common

vulnerabilities such as buffer overflows and memory

leaks. The performance of the application was also

found to be satisfactory, with negligible overheads

due to SGX enclaving. In addition, the application

was evaluated for its security posture using various

techniques, including vulnerability scanning and

penetration testing. The results showed that the

application was resilient to common attacks such as

buffer overflow and injec- tion attacks. Furthermore,

the hardware-based secu- rity features provided by

SGX effectively protected sensitive data within the

enclave against unautho- rized access and tampering.

Overall, the evaluation of SafePass demonstrated that

the application was a secure and reliable password

manager that leveraged the hardware-based security

features of SGX to protect sensitive data from

various security threats.

VIII. FUTURE SCOPE

In the future, the SafePass password manager wallet

can be further improved by implementing ad- ditional

security features such as biometric authen- tication or

multi-factor authentication mechanisms. This would

further enhance the security posture of the application

and provide users with additional layers of protection

against potential attacks. Bio- metric authentication,

for instance, could include fingerprint or facial

recognition, while multi-factor authentication could

involve the use of location based access or similar to

that.

Moreover, the wallet could also be extended to

support more password management functionalities

such as importing and exporting passwords to/from

other applications or devices, password sharing

among authorized users, and automatic password

change notifications. These features would provide

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 09 | Sept – 2025 DOI: 10.55041/ISJEM05021

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 8

users with more flexibility and convenience in man-

aging their passwords and would make the applica-

tion more versatile.

Another possible direction for future develop- ment is

the integration of blockchain technology to provide a

decentralized and tamper-proof password storage

system. This would allow users to have com- plete

control over their password data and reduce the risk

of centralized data breaches or hacking in- cidents.

The implementation of blockchain technol- ogy

would also provide a transparent and auditable trail of

all password management activities, enabling users to

track and monitor their password usage and history.

Finally, the application could be made more user-

friendly and accessible by developing mobile or web-

based versions that can be easily installed and used

on various devices and platforms. This would require

additional efforts to optimize the applica- tion’s

performance and user interface for different screen

sizes and input methods, as well as to ensure

compatibility with different operating systems and

browsers.

IX. CONCLUSION

In conclusion, SafePass demonstrates the poten- tial

of Intel SGX and Rust programming language to

provide secure and reliable password manage- ment

solutions. With its secure enclave implemented in

Rust, the application provides hardware-based

memory encryption and access control features to

protect sensitive data against unauthorized access and

tampering. Moreover, the integration of two- factor

authentication (2FA) within the enclave fur- ther

enhances the application’s overall security pos- ture

by isolating the authentication mechanism from

potential attackers and mitigating risks associated

with credential theft or abuse. The development of

SafePass faced various challenges, such as the limited

availability of crates inside enclave and the need for

careful consideration of the memory usage in enclave,

but these challenges were effectively addressed

through careful design and development. The

limitations of SafePass, such as the need for hardware

with SGX support and the difficulty in maintaining

and updating the code, were also iden- tified.Despite

the limitations, the potential future scope of SafePass

is significant, with possibili- ties such as integration

with cloud-based password storage systems and

mobile devices. SafePass can be further extended to

support additional password management features,

such as password expiration dates, password strength

analysis, and password sharing with trusted contacts.

In summary, SafePass represents a promising so-

lution for secure password management, providing a

foundation for further research and development in

the field of trusted computing and secure en- clave

technologies. The source code is available for

further exploration and development, and we

encourage the community to build upon our work to

further enhance the security and reliability of

password management systems.

https://github.com/AbhijeetSonar21/SafePass.git

REFERENCES

[1] Apache Teaclave SGX SDK. (n.d.). GitHub. Retrieved from
https://github.com/apache/incubator-teaclave-sgx-sdk

[2] Intel Corporation. ”Intel SGX Developer

 Reference.”

https://software.intel.com/content/www/us/en/develop/articles/intel- sgx-

developer-reference.html, accessed February 2023.

[3] R. Chen, B. Shao, and W. Shi. ”SGXBounds: Memory Safety

for Shielded Execution.” In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Se- curity, pages 1771-

1788. ACM, 2019.

[4] T. Ristenpart and T. Shrimpton. ”Careful with Composition:

Limitations of the SGX TCB in Practice.” In Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications

Security, pages 1624-1637. ACM, 2016.

[5] The Rust Programming Language. ”The Rust Programming

Language.” https://doc.rust-lang.org/book/, accessed February 2023.

