
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 11 | Nov – 2025 DOI: 10.55041/ISJEM05167
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Self-Learning AI for Flappy Bird using Neuro-Evolution of Augmenting

Topologies

Manvendra Singha, Ujjawal Rajputb, Harsh Kumarc, Velayudham Sathiyasuntharamd

amanvendra1864@gmail.com, bujjawalrajput103@gmail.com, chy16092004@gmail.com,

dsathiya4196@gmail.com,

a,b,c,dSharda Schoolof Computing Science and Engineering-Greater Noida, India

A R T I C L E I N F O A B S T R A C T

Keywords:

Neuroevolution, NEAT, Flappy Bird, Self-

Learning AI, Neural Network Evolution, Game

Playing AI, Adaptive Game Bot, Reinforcement

Learning

The contribution of this work includes the realization of a self-learning artificial intelligence

agent that can play the popular game Flappy Bird through the Neuroevolution of Augmenting

Topologies algorithm. NEAT is a neuroevolutionary method based on simultaneously evolving

architecture and weights of the neural networks to enable the agent to improve its performance

through mechanisms of simulated natural selection and genetic variation. This work aims to

evidence the efficiency of using NEAT for training an autonomous agent to play video games

with no previous predefined strategy, emphasizing adaptability and learning skills of the evolved

neural networks to the environmental dynamics. Python with Pygame has been implemented to

simulate the environment of the game; it allows for the population of neural networks to evolve

across generations. The experimental results confirm that NEAT efficiently improves gameplay

over time by the AI agent, leading to a significant increase in survival time and enhanced scores.

Advantages of neuroevolution against traditional methods of reinforcement learning are

underlined, among which stands out the capability to find complex topologies of neural networks

fitted for the task at hand without being designed by a human. Considering these circumstances,

the study postulates that NEAT will be able to contribute to ongoing research efforts in the field

of adaptive game bots, autonomous systems, and architectures of evolving artificial intelligence.

Possible further work may consider extending the approach described here to more complex

games and the exploration of hybrid models that integrate neuro-evolution with deep learning

techniques.

1. Introduction

AI and gaming have indeed formed a powerful combination from

which much has been developed and tested in terms of machine

learning algorithms. Flappy Bird is a simple and yet very challenging

2D side-scrolling game. It became famous as a testbed because of its

dynamic environment and unique game mechanics. In the game

Flappy Bird, the objective of an agent is to guide a bird through gaps

between pairs of pipes by controlling its vertical movement. The

agent should not collide with anything and try to maximize its score.

Though simple, the great level of uncertainty together with real-time

demands has made this game an attractive platform in which self-

learning algorithms, able to improve over time, can be evaluated.

Traditional game AI has been mainly rooted in reinforcement

learning methodology, dominated by variants of Deep Q-Networks.

Although there are remarkable achievements in playing complex

games like Atari and Go, most traditional approaches require a large

amount of labeled data to train and computationally expensive

resources. Another approach is neuroevolution-a method that

eschews gradient-based optimization for evolving neural network

architecture and parameters using nature-inspired evolutionary

algorithms. The popular technique is Neuroevolution of Augmenting

Topologies, which progresses incrementally, evolving the weights of

connections along with the structure of neural networks. It allows

finding an effective structure of a neural network that best suits a task

at hand.

NEAT has been very successful in its applications to robotics, control

systems, and game AI. It is able to synthesize

adapting strategies without explicit programming of rules. This feature

is very useful and efficient in changing environments such as Flappy

Bird, where fixed strategies quickly become obsolete due to continuous

changes and complexity in the game. Starting with simple networks,

the NEAT algorithm gradually increases complexity through a series

of mutation and crossover operations based on fitness evaluation. This

was inspired by natural evolution. In fact, this neuroevolutionary

approach can evolve both network design and weights together,

avoiding explicit choices about the former, and often arriving at more

successful and more adaptable solutions.

This research describes how NEAT can train a self- learning AI agent

to master Flappy Bird by developing neural networks that are strongly

focused on decision-making under uncertainty. Unlike reinforcement

learning techniques that are reliant on backpropagation and gradient

descent, NEAT holds promise for enabling efficient searching in both

network design and weight spaces. This might involve less prior

knowledge regarding the design of a network. The adaptive behavior

obtained by the agents trained with NEAT shed light on how

evolutionary algorithms can complement or even outperform more

traditional learning methods with regard to the development of game

AI. Even with advantages, several challenges still remain in developing

NEAT-based agents for real-time applications, including designing

appropriate fitness functions, population management, and avoiding

premature convergence. Then there is the unpredictability of evolution:

the results will vary, hence a solid experimental design or an evaluation

system is very important. Flappy Bird, being one of the simplest yet

complex

mailto:manvendra1864@gmail.com
mailto:ujjawalrajput103@gmail.com
mailto:hy16092004@gmail.com
mailto:dsathiya4196@gmail.com

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 11 | Nov – 2025 DOI: 10.55041/ISJEM05167
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

enough test beds for evolving agents, is appropriately selected as a test

bed to address these challenges. Central to this research is the

training, by the NEAT algorithm, of an AI agent to be able to play

Flappy Bird on its own. It focuses on letting the agent learn whether

to flap to avoid obstacles and optimize its moves for maximum

survival and scores. This will automatically involve processing

continuous input data on the position of the bird and the position of

the pipes and evolving neural network structures that work well

under different game situations. Difficulties range from how to

balance exploration and exploitation during evolution, designing a

good fitness criterion which enhances successful navigation, and

efficiency despite its population-based approach. This paper

investigates how NEAT can create a self- learning AI to play Flappy

Bird by evolving appropriate neural network designs and weights

tailored for the dynamic environment. The findings also add to the

general understanding of neuroevolutionary algorithms in game AI;

further, they prove NEAT's practicality and lay the groundwork for

further work on adaptive game bots. What is sought in this work is to

show that evolutionary methods can serve as competitive alternatives

or complements to reinforcement learning in scenarios requiring

adaptability and autonomous strategy development.

2. Literature Survey

In the last five years, there has been considerable evolution in the

space of AI-driven game playing, with active developments on

reinforcement learning, neuroevolution, and hybrid models that have

improved the capability of autonomous agents with each step. The

easy availability of public benchmarks has triggered research ranging

from algorithmic rigor to practical implementation on simple arcade

games like Flappy Bird.

These have been dominated by reinforcement learning approaches in

2020, particularly the use of deep Q-networks and policy-gradient

methods. For example, Smith et al. (2020) showed that agents for

Flappy Bird could be trained by using DQNs, which achieved high

gameplay improvements after optimization of such reward functions

against game dynamics. However, such approaches generally

required significant computational resources and hyperparameter

tuning in order to work effectively. Neuroevolution began to receive

renewed interest at this point, as researchers started to look for

alternatives to gradient-based RL methods. In particular, revisiting

Stanley's NEAT algorithm as a promising technique for evolving

neural architectures and weights sans gradient backpropagation has

resulted in much more flexible model structures.

A great deal of evidence pointing towards the popularity hybrid

models that integrated neuroevolution along with reinforcement

learning was one of the notable developments in the field by the year

2021. An evolutionary policy-gradient method of neural-learning,

which combined genetic algorithms and gradient descent in such a

way that it was synergistic, was presented by Kim and Lee. They also

permitted agents that were playing games to be marked with faster

convergence rates and stochastic robustness. A trend similar to this

was continued by Patel et al. with whom NEAT's first application on

game-playing agents for non-trivial problems over simple tasks was

studied and implemented, a version of Flappy Bird with diverse

mechanics. All in all, these studies have been responsible for

indicating the flexible power of NEAT and its hybrids in dealing with

problems characterized by uncertainty and requiring real-time adaptive

decision-making.

Improvements to scale neuroevolution methods to complex tasks

continued in 2022. Zhu et al. (2022) introduce parallelised NEAT-

implementations on distributed computing architectures that speed up

evolutionary search through decreased training times without

sacrificing performance. Application-wise, a number of works

extended the scope of the Flappy Bird AI into neuro-evolutionary

agents with provenance tracking and explainability-a line of work

pursued in order to alleviate some of the more common complaints

regarding black-box behaviors associated with evolved neural

networks. Garcia and Smith (2022) performed a comparative study

investigating NEAT against deep RL baselines across several arcade-

style games and found that NEAT is more adaptable but sometimes at a

cost in terms of sample efficiency.

Improvement of NEAT by deep learning methodologies started in

2023. Wang et al. (2023) developed Deep NEAT with a

neuroevolution-evolved convolutional layer to preprocess the high-

dimensional inputs that contained complex features. Their approach

greatly enhanced the learning capability for generalization, especially in

platformer games such as Flappy Bird. Around that time, Kumar and

Singh (2023) instead focused on refining NEAT's fitness function and

designed a reward scheme which captured several subtle game-play

features like risk-taking and long- term survival. These two works

considerably upgraded the intelligence of the NEAT agents by

enhancing their capability to show human-like decision-making during

game plays.

Greater integrations of neuroevolution into multi-agent frameworks

were thus realized in the transition to 2024. Co- evolutionary

algorithms have been demonstrated by Lee and Kim, where, in

simulation, a set of multiple NEAT agents compete and cooperate to

foster emergent complex behaviors. Adaptation of Flappy Bird

introduced during this period introduced not only sensory

augmentation but also environmental variability, which further

challenges NEAT frameworks to evolve highly robust and adaptive

game- playing policies. Complementary work by Hernandez et al. uses

XAI methodologies and dissects learned topologies to provide insight

into both evolved strategies and decision- making pathways.

This trend is furthered in 2025 by state-of-the-art work on the

hybridizing of NEAT with reinforcement learning and transformer-

based attention mechanisms. Patel et al. (2025) came up with a new

architecture, Neuroevolution with Attention Networks (NEAT-AN),

which accelerates learning by focusing evolutionary search on the

salient game features in Flappy Bird and beyond. Furthermore,

hardware acceleration has enabled the evolution and training of game

bots in real time, hence allowing for more practical deployments in

interactive gaming environments. Other emerging trends put the focus

on ethical considerations and fairness during the evolution of game-

playing AI agents so as not to create exploitative or undesired

gameplay patterns.

In all, the literature reviewed from 2020 through 2025 reflects a

development trajectory from the dominance of classical RL to highly

advanced neuroevolutionary and hybrid approaches. NEAT continues

to see widespread usage for being able to evolve network topology

alongside weights, hence giving flexibility in dynamic game scenarios

like Flappy Bird. Recent advances with respect to parallelization,

architecture design, explainability, and multi-agent co- evolution have

overcome former limitations of neuroevolution, and this branch has

nowadays become a competitive and complementary alternative for

deep reinforcement learning. The survey validates the continuous

value and ever-enhanced scope of adaptive self-learning AI agents in

playing games and hence the relevance of using

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 11 | Nov – 2025 DOI: 10.55041/ISJEM05167
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

3

NEAT to train an agent to play Flappy Bird, as pursued by this 𝑦norm =
𝑦bird

research.
bird 512

3. Methodology

3.1 Overview

This work leverages the NEAT algorithm in evolving neural

networks capable of autonomously playing the Flappy Bird game.

NEAT is intrinsically different from any other algorithm in its

deployment of evolutionary computation for evolving not just the

connection weights but the topology of neural networks, which

allows neural structures to grow incrementally and adapt to task

requirements. It includes simulation of the game environment, neural

encoding of agents, genetic evolution operations, fitness evaluation,

and empirical validation; all these should be addressed accordingly

with due rigor regarding reproducibility and technical transparency.

3.2 System Architecture

The architecture of the entire system has four major parts: (1) a

simulator for the game environment, (2) the NEAT evolutionary

framework, (3) a control for the neural agent, and (4) a module for

evaluation of fitness and selection. In this study, the Flappy Bird

simulator is built using the Python programming language along with

the Pygame library. The simulator generates real-time state vectors

which consist of bird's position, bird's speed, and pipe positions with

respect to bird. The entire information is then packed into a feature

vector x of fixed size which is the format in which agent gets the data

without any change.

The neural agent is represented as a directed acyclic graph

comprising of nodes (neurons) and edges (connections). This is done

through a genome representation G=(N,C), where N is the node set

and C is the list of the connections that are enabled. Each connection

is represented as a tuple (nin, nout, w, enabled, i): nin, nout point to the

source and target nodes respectively, w is the weight of the

connection, enabled indicates whether the connection is on or off, and

i is the innovation number that is assigned to that connection to trace

its lineage through the evolutionary process.
The evolution engine supervises a population Pt = {G1,

and velocity normalization accounts for the gravity constant used in

Pygame (g=0.25 pixels/frame²).

Preprocessed input xt ∈n are passed to the active neural network for

action selection.

3.4 NEAT Algorithmic Details

3.4.1 Neural Network Encoding

Initial genomes encode minimal networks: all inputs connected directly

to one output neuron (flap action). No hidden nodes exist at

initialization. Connection weights are sampled from a uniform

distribution:

w ∼ U (-1.0,1.0)

3.4.2 Evolutionary Operators

At each generation, genetic operations are applied to the genomes:

• Mutation:

• Addition of connection: two unconnected nodes are

connected at random, which opens a new channel for transferring the

signal.

• Add node: split an existing connection and insert a new

hidden node, rerouting the signals appropriately.

• Weight perturbation: update weights by adding Gaussian

noise (w′=w+N(0,0.1)).

• Crossover:

• Offspring inherit aligned genes from two parents, using

innovation numbers for matching.

• Disjoint/excess genes can be inherited from the fitter

parent.

3.4.3 Speciation

NEAT clusters genomes into species by genetic similarity. The

compatibility distance 𝛿 between two genomes is computed as:
𝛿 =

𝑐1 𝐸
+

𝑐2𝐷
+ 𝑐 𝑊‾

𝑁 𝑁
3

G2,… GN} for every generation t. Evaluation involves simulating the

neural network based on each genome in the gaming environment

and finding out how well it performs.

3.3 Data Collection and Preprocessing

Inputs to the neural network controller are extracted each frame in

the simulation. The feature vector includes:

• Bird’s vertical position: ybird

• Bird’s vertical velocity: vbird

• Horizontal distance to next pipe: Δx1

• Vertical distance from bird to gap center of next

pipe: Δy1

• Horizontal & vertical distances for the subsequent

pipe(s): Δx2, Δy2

To standardize data representation, all input features

where 𝐸 is the number of excess genes, 𝐷 the number of disjoint genes,

𝑊‾ the average weight difference of matching genes, and 𝑁 the

genome length (normalized to 1 if fewer than 20 genes). Coefficients 𝑐1

= 1.0, 𝑐2 = 1.0, 𝑐3 = 0.4 reflect standard NEAT settings. Species are

defined by a threshold (e.g., 𝛿 < 3.0).

3.4.4 Fitness Evaluation

Fitness for genome 𝐺, 𝑓(𝐺), is the mean number of pipes passed over

three randomized simulation episodes:
3
1

𝑓(𝐺) = ∑ pipes𝑘

𝑘=1

Episodes terminate on collision or after 10,000 frames (approx. 166

seconds at 60 FPS).

Within each species, adjusted fitness with fitness sharing:

are normalized:

𝑥′𝑗 =

𝑥𝑗 − 𝑎𝑗

𝑏𝑗−𝑎𝑗

𝑓adj

𝑓(𝐺)

∣ species𝐺
∣

where aj, bj are feature-specific min/max values reflecting screen

dimensions or game physics. For example, if screen height is 512

pixels,

Selection for reproduction is fitness-proportionate, with survival

thresholds and elitism maintained per species.

(𝐺) =

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 11 | Nov – 2025 DOI: 10.55041/ISJEM05167
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

3.4.5 Action Selection

The network processes inputs each frame. Output is a single scalar

𝑎 produced by the output neuron:

𝑎 = 𝜎(∑ 𝑤𝑗𝑥𝑗)
𝑗

where 𝜎 is the sigmoid function, and the flap action is

determined as:

NEAT does architecture search and weight optimization automatically.

It protects innovation because of speciation. Adaptation in challenging,

dynamic tasks-such as Flappy Bird- is possible. Unique genome

encodings maintain meaningful genetic diversity using innovation

numbers historically. Other potential sources of instability, such as very

rarely noisy fitness evaluations and judicious normalization, are further

moderated through multiple runs and parameter tuning. As

flap
1, 𝑎 ≥ 0.5
= {
0, 𝑎 < 0.5

supplementary material, the supporting scripts for the implementation, configuration files,

and model weights are provided that will enable immediate replication and

3.5 Experimental Process Flow

The methodology can be summarized by the following pseudocode:

This iterative loop is repeated for up to 100 generations, or until a

satisfactory agent is evolved.

3.6 Hyperparameters and Implementation

The evolutionary engine used in this study is NEAT- Python

v0.92. Hyperparameters:

extensions.

Figure 3.1: Evolution Performance Curves

Table 3.1: NEAT Hyperparameters

Experiments are run on Python 3.8, utilizing Pygame for simulation.

All metrics and logs are archived for analysis.

3.7 Evaluation Metrics

Agent performance is measured using several quantitative

metrics:

• Average Fitness: Mean pipes passed over all agents per

generation.

• Maximum Fitness: Best pipe count achieved by any agent

per generation.

• Convergence Rate: Number of generations to reach certain

fitness thresholds, e.g., 30, 40, 50 pipes.

• Robustness: Standard deviation of fitness across episodes.

• Statistical validation pits NEAT against baseline agents

(random and heuristic). Ablation studies vary mutation

rates/speciation coefficients.

3.8 Advantages, Limitations, and Reproducibility

4. Discussion

The use of the Neuroevolution of Augmenting Topologies algorithm in

this manner leads to an AI agent trained separately to play Flappy Bird,

and during the whole process, a lot of interesting results come out,

regarding both the neuroevolutionary methods' effectiveness in game

environments and the overall implications for adaptive agent design.

The experiments were conducted under very strict conditions involving

through tuning over hyperparameters and a very strict fitness

evaluation; thus, significant improvements were achieved in the course

of different generations.

One of the main points drawn from this research is the fact that NEAT

is a very effective tool for the gradual and piecewise development of

complex neural architectures that are superior to the fixed-topology

networks by a considerable margin. Agents that began with very simple

policies and a minimal connection of neurons were gradually

transformed, through the mutations, crossovers, and speciation of the

evolutionary process, into ones that could effectively utilize hidden

nodes to form a complex connection structure that resulted in a very

significant enhancement of their ability to play the game. This kind of

outcome goes to the very heart of the NEAT philosophy - that structure

should and can be evolved instead of being pre-specified. Empirical

evidence has shown that the networks produced by the evolution

process have been better than both the random policy and the policy

Parameters Values
Polpulation Size (N) 150
Compatibility Threshold 3.0
Weight Mutation Power 0.5
Weight Mutation Rate 0.8
Node Mutation Rate 0.03
Connection Mutation Rate 0.05
Max Generations 100
Frames per Episodes 10000

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 11 | Nov – 2025 DOI: 10.55041/ISJEM05167
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

based on the heuristics during the tests of average pipes passed,

survival time, and general endurance.

The use of the Neuroevolution of Augmenting Topologies algorithm

in this manner leads to an AI agent trained separately to play Flappy

Bird, and during the whole process, a lot of interesting results come

out, regarding both the neuroevolutionary methods' effectiveness in

game environments and the overall implications for adaptive agent

design. The experiments were conducted under very strict conditions

involving through tuning over hyperparameters and a very strict

fitness evaluation; thus, significant improvements were achieved in

the course of different generations.

One of the main points drawn from this research is the fact that

NEAT is a very effective tool for the gradual and piecewise

development of complex neural architectures that are superior to the

fixed-topology networks by a considerable margin. Agents that began

with very simple policies and a minimal connection of neurons were

gradually transformed, through the mutations, crossovers, and

speciation of the evolutionary process, into ones that could

effectively utilize hidden nodes to form a complex connection

structure that resulted in a very significant enhancement of their

ability to play the game. This kind of outcome goes to the very heart

of the NEAT philosophy - that structure should and can be evolved

instead of being pre-specified. Empirical evidence has shown that the

networks produced by the evolution process have been better than

both the random policy and the policy based on the heuristics during

the tests of average pipes passed, survival time, and general

endurance.

Ablation studies that tested various parameters of mutation and

speciation settings strongly emphasized the necessity of careful

selections of hyperparameters. Populations smaller than 100

experienced quick initial progress followed by a ceiling of

innovation. Very big populations took much longer to get to the same

point without a considerable gain. Likewise, high mutation rates did

not allow patterns to be formed and thus lost them while low rates

made the process of evolution sluggish. The final configuration,

Table 3.1, reached a nice compromise for this area between

exploration and refinement.

These findings imposed a number of limitations which suggested the

following possible future works: mainly, fitness evaluation is very

computing-intensive because it takes thousands of simulation

episodes per generation; this greatly limits the possibilities of rapid

prototyping and large-scale experimentation. For some runs, network

complexity can become huge in an uncontrolled manner giving rise to

agents with nodes and connections that are either redundant or not

used at all. The minimalist bias of NEAT while preventing excessive

complexity may still allow for further slimming down of evolved

solutions through periodic pruning or regularization. Lastly, there

were times when population performance would decline due to

instability, which was very often caused by speciation collapse or

fitness plateauing and this points to the necessity for adaptive

mechanisms that can dynamically adjust the evolutionary pressures.

Another remarkable aspect was the fact that the algorithm was

capable of dealing with noisy reward signals. In the case of gradient-

based deep reinforcement learning, the problem of exploding or

vanishing gradients is very likely, whereas, with the population-based

approach of NEAT, the gradients remained stable even in the

presence of delayed or sparse feedback that was typical for the game

Flappy Bird. Nevertheless, pure neuroevolution is still less sample-

efficient compared to direct policy-gradient or Q-learning algorithms,

which thus may be seen as a trade-off worth exploring by means of

hybrid models.

The qualitative analysis of the evolved gameplay showed that the agents

could react in real-time to pipe configuration and speed changes using

unexpectedly strategies, such as timing their flaps exactly to avoid

crashes or learning to stay at the bottom of the screen to keep their

navigation stable. This points out the power of NEAT in discovering

complex strategies without explicit programming or human teaching.

The NEAT algorithm was thus validated as a practical and competitive

method for developing self-learning agents in complex, dynamic

games. The process described in this paper was efficient and simple to

replicate. Every experiment, along with its configuration files and

evolutionary logs, is provided for the sake of reproducibility. Further

research could extend this work by integrating deep learning concepts

into NEAT, by means of automatic topology pruning or by testing in

input and/or reward spaces with higher dimensions. The excellent

results presented in this paper have put NEAT back into the present

spotlight, thereby establishing it firmly as one of the key players in the

toolkit for evolutionary AI and game learning research.

Figure 3.2: NEAT Evolution Performance Trends

5. Conclusion

The NEAT algorithm was successfully utilized in this project to

create a self-learning AI agent that would independently play

the game of Flappy Bird. The NEAT method gives rise to neural

network topologies and weights that in an incremental manner lead to

the development of complex, adaptable controllers with the

resulting performance of the players evolving through successive

generations of the game. The agent had a real-time input of game state

and was later subjected to standardized fitness metrics, which

averaged performance during randomized simulation episodes, in

learning timely control over flapping. The evolution of our AI in an

efficient manner calls for a proper mixture of exploration and

exploitation. Speciation was used in our method to safeguard promising

new network designs, fitness sharing was used to discourage

populations from becoming too homogeneous and this was all

done through the standard mutation and crossover. Networks that

started with the minimum setup eventually became intricate

architectures that could accommodate the high processing required

for good performance in a chaotic game world. Our confidence was

corroborated by the experimental results that depicted a clear, quick

rise in both average and maximum

fitness in just a few generations.

It is true that this method incurred a significant computational overhead

on account of the many population- based simulations. However, the

trade-off was justifiable and our system was very resistant to "noisy"

data and sparse rewards, two problems that often defeat the gradient-

based learning methods. The evolved gameplay strategies formed a

continuum from very conservative to very risky and their diversity in

the population was indicated by the emergence of different policies.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 11 | Nov – 2025 DOI: 10.55041/ISJEM05167
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

There are likely to be further advancements in the area of hybridization

of NEAT with reinforcement learning or deep learning methods that

will lead to better sample efficiency and scalability. Furthermore, the

combination of topology pruning with parallel evolutionary strategies

may enhance performance at lower computational costs. Thus, this

study supports NEAT as a versatile and appropriate technique for the

development of real-time adaptive agents in game settings and at the

same time offers significant contributions to neuroevolution and

evolutionary game AI areas.

References

1. K. O. Stanley and R. Miikkulainen, "Evolving Neural

Networks through Augmenting Topologies," Evolutionary

Computation, vol. 10, no. 2, pp. 99–127,

2002.

2. K. O. Stanley, J. Lehman, J. Clune, and R. Miikkulainen,

"Designing Neural Networks through Evolutionary Algorithms,"

Nature Machine Intelligence, vol. 1, no. 1,

pp. 24–35, 2019.

3. S. Schrum, T. Beattie, and J. Togelius, "Neuroevolution for

Game Play," Encyclopedia of Artificial Intelligence, pp. 787–795,

2020.

4. J. T. Smith, W. C. Fu, and M. J. Spector, "Evolutionary

approaches for training Flappy Bird

agents," International Journal of Computer Games Technology, vol.

2020, Article ID 8745893, 2020.

5. H. Kim and D. Lee, "Hybrid Neuroevolutionary and

Reinforcement Learning Methods for Game AI," IEEE Transactions

on Games, vol. 13, no. 3, pp. 377–386, 2021.

6. M. Patel and S. Singh, "Application of NEAT in Training

Autonomous Game Agents: Flappy Bird Case Study," IEEE

Access, vol. 9, pp. 120345–120356, 2021.

7. J. Wang, Y. Zhang, and H. Liu, "Deep Neuroevolutionary

Models for Adaptive Control in Dynamic Games," Journal of Machine

Learning Research, vol. 23, pp. 1–29, 2022.

8. L. Zhu et al., "Distributed Neuroevolution: Scaling NEAT for

Complex Tasks," IEEE Transactions on Evolutionary Computation,

vol. 26, no. 1, pp. 112–125, 2022.

9. R. Kumar and A. Singh, "Fitness Function Engineering for

Improved Neuroevolution in Game Playing," Applied Soft Computing,

vol. 120, Article ID 108594, 2023.

10. J. Lee and M. Kim, "Co-evolutionary Neuroevolutionary

Agents for Complex Game Environments," IEEE Transactions on

Cybernetics, vol. 53, no. 2, pp. 514–526,

2023.

11. S. P. Patel et al., "Attention Enhanced Neuroevolution for

Efficient Game AI," IEEE Transactions on Neural Networks and

Learning Systems, vol. 34, no. 4, pp. 1546- 1558, 2024.

12. R. Gunawan, "Adaptations of NEAT Algorithm for Neural

Network Optimization in Non-Parametric Spaces," Engineering

Journal, vol. 30, no. 2, pp. 215–229, 2024.

