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The contribution of this work includes the realization of a self-learning artificial intelligence
agent that can play the popular game Flappy Bird through the Neuroevolution of Augmenting
Topologies algorithm. NEAT is a neuroevolutionary method based on simultaneously evolving
architecture and weights of the neural networks to enable the agent to improve its performance
through mechanisms of simulated natural selection and genetic variation. This work aims to
evidence the efficiency of using NEAT for training an autonomous agent to play video games
with no previous predefined strategy, emphasizing adaptability and learning skills of the evolved
neural networks to the environmental dynamics. Python with Pygame has been implemented to
simulate the environment of the game; it allows for the population of neural networks to evolve
across generations. The experimental results confirm that NEAT efficiently improves gameplay
over time by the Al agent, leading to a significant increase in survival time and enhanced scores.
Advantages of neuroevolution against traditional methods of reinforcement learning are
underlined, among which stands out the capability to find complex topologies of neural networks
fitted for the task at hand without being designed by a human. Considering these circumstances,
the study postulates that NEAT will be able to contribute to ongoing research efforts in the field
of adaptive game bots, autonomous systems, and architectures of evolving artificial intelligence.
Possible further work may consider extending the approach described here to more complex
games and the exploration of hybrid models that integrate neuro-evolution with deep learning
techniques.

1. Introduction adapting strategies without explicit programming of rules. This feature

is very useful and efficient in changing environments such as Flappy

Al and gaming have indeed formed a powerful combination from
which much has been developed and tested in terms of machine
learning algorithms. Flappy Bird is a simple and yet very challenging
2D side-scrolling game. It became famous as a testbed because of its
dynamic environment and unique game mechanics. In the game
Flappy Bird, the objective of an agent is to guide a bird through gaps
between pairs of pipes by controlling its vertical movement. The
agent should not collide with anything and try to maximize its score.
Though simple, the great level of uncertainty together with real-time
demands has made this game an attractive platform in which self-
learning algorithms, able to improve over time, can be evaluated.
Traditional game Al has been mainly rooted in reinforcement
learning methodology, dominated by variants of Deep Q-Networks.
Although there are remarkable achievements in playing complex
games like Atari and Go, most traditional approaches require a large
amount of labeled data to train and computationally expensive
resources. Another approach is neuroevolution-a method that
eschews gradient-based optimization for evolving neural network
architecture and parameters using nature-inspired evolutionary
algorithms. The popular technique is Neuroevolution of Augmenting
Topologies, which progresses incrementally, evolving the weights of
connections along with the structure of neural networks. It allows
finding an effective structure of a neural network that best suits a task
at hand.

NEAT has been very successful in its applications to robotics, control
systems, and game Al It is able to synthesize

Bird, where fixed strategies quickly become obsolete due to continuous
changes and complexity in the game. Starting with simple networks,
the NEAT algorithm gradually increases complexity through a series
of mutation and crossover operations based on fitness evaluation. This
was inspired by natural evolution. In fact, this neuroevolutionary
approach can evolve both network design and weights together,
avoiding explicit choices about the former, and often arriving at more
successful and more adaptable solutions.

This research describes how NEAT can train a self- learning Al agent
to master Flappy Bird by developing neural networks that are strongly
focused on decision-making under uncertainty. Unlike reinforcement
learning techniques that are reliant on backpropagation and gradient
descent, NEAT holds promise for enabling efficient searching in both
network design and weight spaces. This might involve less prior
knowledge regarding the design of a network. The adaptive behavior
obtained by the agents trained with NEAT shed light on how
evolutionary algorithms can complement or even outperform more
traditional learning methods with regard to the development of game
Al Even with advantages, several challenges still remain in developing
NEAT-based agents for real-time applications, including designing
appropriate fitness functions, population management, and avoiding
premature convergence. Then there is the unpredictability of evolution:
the results will vary, hence a solid experimental design or an evaluation
system is very important. Flappy Bird, being one of the simplest yet
complex
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enough test beds for evolving agents, is appropriately selected as a test
bed to address these challenges. Central to this research is the
training, by the NEAT algorithm, of an Al agent to be able to play
Flappy Bird on its own. It focuses on letting the agent learn whether
to flap to avoid obstacles and optimize its moves for maximum
survival and scores. This will automatically involve processing
continuous input data on the position of the bird and the position of
the pipes and evolving neural network structures that work well
under different game situations. Difficulties range from how to
balance exploration and exploitation during evolution, designing a
good fitness criterion which enhances successful navigation, and
efficiency despite its population-based approach. This paper
investigates how NEAT can create a self- learning Al to play Flappy
Bird by evolving appropriate neural network designs and weights
tailored for the dynamic environment. The findings also add to the
general understanding of neuroevolutionary algorithms in game Al;
further, they prove NEAT's practicality and lay the groundwork for
further work on adaptive game bots. What is sought in this work is to
show that evolutionary methods can serve as competitive alternatives
or complements to reinforcement learning in scenarios requiring
adaptability and autonomous strategy development.

2. Literature Survey

In the last five years, there has been considerable evolution in the
space of Al-driven game playing, with active developments on
reinforcement learning, neuroevolution, and hybrid models that have
improved the capability of autonomous agents with each step. The
easy availability of public benchmarks has triggered research ranging
from algorithmic rigor to practical implementation on simple arcade
games like Flappy Bird.

These have been dominated by reinforcement learning approaches in
2020, particularly the use of deep Q-networks and policy-gradient
methods. For example, Smith et al. (2020) showed that agents for
Flappy Bird could be trained by using DQNs, which achieved high
gameplay improvements after optimization of such reward functions
against game dynamics. However, such approaches generally
required significant computational resources and hyperparameter
tuning in order to work effectively. Neuroevolution began to receive
renewed interest at this point, as researchers started to look for
alternatives to gradient-based RL methods. In particular, revisiting
Stanley's NEAT algorithm as a promising technique for evolving
neural architectures and weights sans gradient backpropagation has
resulted in much more flexible model structures.

A great deal of evidence pointing towards the popularity hybrid
models that integrated neuroevolution along with reinforcement
learning was one of the notable developments in the field by the year
2021. An evolutionary policy-gradient method of neural-learning,
which combined genetic algorithms and gradient descent in such a
way that it was synergistic, was presented by Kim and Lee. They also
permitted agents that were playing games to be marked with faster
convergence rates and stochastic robustness. A trend similar to this
was continued by Patel et al. with whom NEAT's first application on
game-playing agents for non-trivial problems over simple tasks was
studied and implemented, a version of Flappy Bird with diverse
mechanics. All in all, these studies have been responsible for
indicating the flexible power of NEAT and its hybrids in dealing with
problems characterized by uncertainty and requiring real-time adaptive
decision-making.

Improvements to scale neuroevolution methods to complex tasks
continued in 2022. Zhu et al. (2022) introduce parallelised NEAT-
implementations on distributed computing architectures that speed up
evolutionary search through decreased training times without
sacrificing performance. Application-wise, a number of works
extended the scope of the Flappy Bird Al into neuro-evolutionary
agents with provenance tracking and explainability-a line of work
pursued in order to alleviate some of the more common complaints
regarding black-box behaviors associated with evolved neural
networks. Garcia and Smith (2022) performed a comparative study
investigating NEAT against deep RL baselines across several arcade-
style games and found that NEAT is more adaptable but sometimes at a
cost in terms of sample efficiency.

Improvement of NEAT by deep learning methodologies started in
2023. Wang et al. (2023) developed Deep NEAT with a
neuroevolution-evolved convolutional layer to preprocess the high-
dimensional inputs that contained complex features. Their approach
greatly enhanced the learning capability for generalization, especially in
platformer games such as Flappy Bird. Around that time, Kumar and
Singh (2023) instead focused on refining NEAT's fitness function and
designed a reward scheme which captured several subtle game-play
features like risk-taking and long- term survival. These two works
considerably upgraded the intelligence of the NEAT agents by
enhancing their capability to show human-like decision-making during
game plays.

Greater integrations of neuroevolution into multi-agent frameworks
were thus realized in the transition to 2024. Co- evolutionary
algorithms have been demonstrated by Lee and Kim, where, in
simulation, a set of multiple NEAT agents compete and cooperate to
foster emergent complex behaviors. Adaptation of Flappy Bird
introduced during this period introduced not only sensory
augmentation but also environmental variability, which further
challenges NEAT frameworks to evolve highly robust and adaptive
game- playing policies. Complementary work by Hernandez et al. uses
XAI methodologies and dissects learned topologies to provide insight
into both evolved strategies and decision- making pathways.

This trend is furthered in 2025 by state-of-the-art work on the
hybridizing of NEAT with reinforcement learning and transformer-
based attention mechanisms. Patel et al. (2025) came up with a new
architecture, Neuroevolution with Attention Networks (NEAT-AN),
which accelerates learning by focusing evolutionary search on the
salient game features in Flappy Bird and beyond. Furthermore,
hardware acceleration has enabled the evolution and training of game
bots in real time, hence allowing for more practical deployments in
interactive gaming environments. Other emerging trends put the focus
on ethical considerations and fairness during the evolution of game-
playing Al agents so as not to create exploitative or undesired
gameplay patterns.

In all, the literature reviewed from 2020 through 2025 reflects a
development trajectory from the dominance of classical RL to highly
advanced neuroevolutionary and hybrid approaches. NEAT continues
to see widespread usage for being able to evolve network topology
alongside weights, hence giving flexibility in dynamic game scenarios
like Flappy Bird. Recent advances with respect to parallelization,
architecture design, explainability, and multi-agent co- evolution have
overcome former limitations of neuroevolution, and this branch has
nowadays become a competitive and complementary alternative for
deep reinforcement learning. The survey validates the continuous
value and ever-enhanced scope of adaptive self-learning Al agents in
playing games and hence the relevance of using
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NEAT to train an agent to play Flappy Bird, as pursued by this
research.

3. Methodology

3.1 Overview

This work leverages the NEAT algorithm in evolving neural
networks capable of autonomously playing the Flappy Bird game.
NEAT is intrinsically different from any other algorithm in its
deployment of evolutionary computation for evolving not just the
connection weights but the topology of neural networks, which
allows neural structures to grow incrementally and adapt to task
requirements. It includes simulation of the game environment, neural
encoding of agents, genetic evolution operations, fitness evaluation,
and empirical validation; all these should be addressed accordingly
with due rigor regarding reproducibility and technical transparency.

3.2 System Architecture

The architecture of the entire system has four major parts: (1) a
simulator for the game environment, (2) the NEAT evolutionary
framework, (3) a control for the neural agent, and (4) a module for
evaluation of fitness and selection. In this study, the Flappy Bird
simulator is built using the Python programming language along with
the Pygame library. The simulator generates real-time state vectors
which consist of bird's position, bird's speed, and pipe positions with
respect to bird. The entire information is then packed into a feature
vector x of fixed size which is the format in which agent gets the data
without any change.

The neural agent is represented as a directed acyclic graph
comprising of nodes (neurons) and edges (connections). This is done
through a genome representation G=(N,C), where N is the node set
and C is the list of the connections that are enabled. Each connection
is represented as a tuple (7, now W, enabled, i): nin, now point to the
source and target nodes respectively, w is the weight of the
connection, enabled indicates whether the connection is on or off, and
iis the innovation number that is assigned to that connection to trace

its lineage through the evolutionary process.
Tfle evolution e%gme supervises glg)opu?atlon P = {G,,

Gy,... Gy} for every generation t. Evaluation involves simulating the
neural network based on each genome in the gaming environment
and finding out how well it performs.

3.3 Data Collection and Preprocessing

Inputs to the neural network controller are extracted each frame in
the simulation. The feature vector includes:

. Bird’s vertical position: yei

. Bird’s vertical velocity: vei

o Horizontal distance to next pipe: 4x;

(] Vertical distance from bird to gap center of next
pipe: 4y;

(] Horizontal & vertical distances for the subsequent

pipe(s): dxz, Ay

To standardize data representation, all input features

are normalized:
Xj—a;j

bj*aj

’

Xj=

where a;, b; are feature-specific min/max values reflecting screen
dimensions or game physics. For example, if screen height is 512
pixels,

norm _ Ybird
Yo =51

and velocity normalization accounts for the gravity constant used in
Pygame (g=0.25 pixels/frame?).

Preprocessed input x; €” are passed to the active neural network for
action selection.

3.4  NEAT Algorithmic Details

34.1 Neural Network Encoding

Initial genomes encode minimal networks: all inputs connected directly
to one output neuron (flap action). No hidden nodes exist at
initialization. Connection weights are sampled from a uniform
distribution:

w~U(-1.0,1.0)

34.2  Evolutionary Operators

At each generation, genetic operations are applied to the genomes:

. Mutation:

. Addition of connection: two unconnected nodes are
connected at random, which opens a new channel for transferring the
signal.

. Add node: split an existing connection and insert a new
hidden node, rerouting the signals appropriately.

. Weight perturbation: update weights by adding Gaussian
noise (w'=w+N(0,0.1)).

. Crossover:

. Offspring inherit aligned genes from two parents, using
innovation numbers for matching.

. Disjoint/excess genes can be inherited from the fitter
parent.

34.3  Speciation

NEAT clusters genomes into species by genetic similarity. The
compatibility distance & getw%leg twg, genomes is computed as:
= + =+ W M M

where E is the number of excess genes, D the number of disjoint genes,
W™ the average weight difference of matching genes, and N the
genome length (normalized to 1 if fewer than 20 genes). Coefficients c;
= 1.0, ¢ = 1.0, c3 = 0.4 reflect standard NEAT settings. Species are
defined by a threshold (e.g., § <3.0).

34.4  Fitness Evaluation

Fitness for genome G, f(G), is the mean number of pipes passed over
three randomized simulation episodes:
3

1
f(G)= ZZpipes
k=1

Episodes terminate on collision or after 10,000 frames (approx. 166
seconds at 60 FPS).
Within each species, adjusted fitness with fitness sharing:

fG)

| species;; |

fag =

Selection for reproduction is fitness-proportionate, with survival
thresholds and elitism maintained per species.
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34.5 Action Selection
NEAT does architecture search and weight optimization automatically.
The network processes inputs each frame. Outputis a single scalar It protects innovation because of speciation. Adaptation in challenging,
a produced by the output neuron: dynamic tasks-such as Flappy Bird- is possible. Unique genome
a = (X wpx) encodings. ma.intain meaningful . genetic dive.rsity .u.sing innovation
} numbers historically. Other potential sources of instability, such as very
/ rarely noisy fitness evaluations and judicious normalization, are further
where g is the sigmoid function, and the flap action is moderated through multiple runs and parameter tuning. As
determined as:

1, a=05 supplementary material, the supporting scripts for the implementation, configuration files,
ﬂa& { a<05 and model weights are provided that will enable immediate replication and
3.5  Experimental Process Flow extensions. Fost st Paformestes: Durvos
The methodology can be summarized by the following pseudocode: ' i ,/’/
e—t Ly (e Bl A P

7
L~
This iterative loop is repeated for up to 100 generations, or until a ,h', AN
satisfactory agent is evolved. fer W A
4 | Rive
1, Vv | V \ ’i \
3.6 Hyperparameters and Implementation N " v l'\v_ M |
s " rl y i
The evolutionary engine used in this study is NEAT- Python T \
v0.92. Hyperparameters: J
Parameters Values o
Polpulation Size (N) 150 Figure 3.1: Evolution Performance Curves
Compatibility Threshold 3.0
Weight Mutation Power 0.5
Weight Mutation Rate 0.8 4. Discussion
Node Mutation Rate 0.03
Connection Mutation Rate 0.05 The use of the Neuroevolution of Augmenting Topologies algorithm in
Max Generations 100 this manner leads to an Al agent trained separately to play Flappy Bird,
Frames per Episodes 10000 and during the whole process, a lot of interesting results come out,

regarding both the neuroevolutionary methods' effectiveness in game
environments and the overall implications for adaptive agent design.
The experiments were conducted under very strict conditions involving
through tuning over hyperparameters and a very strict fitness
evaluation; thus, significant improvements were achieved in the course
of different generations.

One of the main points drawn from this research is the fact that NEAT
is a very effective tool for the gradual and piecewise development of
complex neural architectures that are superior to the fixed-topology

Table 3.1: NEAT Hyperparameters

Experiments are run on Python 3.8, utilizing Pygame for simulation.
All metrics and logs are archived for analysis.

3.7  Evaluation Metrics

Agent performance is measured using several quantitative

metrics: networks by a considerable margin. Agents that began with very simple
. Average Fitness: Mean pipes passed over all agents per policies and a minimal connection of neurons were gradually
eneration transformed, through the mutations, crossovers, and speciation of the
% M.aximum Fitness: Best pine count achieved by any agent evolutionary process, into ones that could effectively utilize hidden
er generation ' pip y any ag nodes to form a complex connection structure that resulted in a very
pers C ’ Rate: Number of i ‘ b certai significant enhancement of their ability to play the game. This kind of
L] N .
fit th on}:/ elrdgence 3a0e.40 L;r(r)l er of generations fo reach certamn outcome goes to the very heart of the NEAT philosophy - that structure
1tness thresholds, ¢.8., 54, 49, p 'P es. . should and can be evolved instead of being pre-specified. Empirical
. Robustness: Standard deviation of fitness across episodes. evidence has shown that the networks produced by the evolution
. Statistical validation pits NEAT against baseline agents

o ) ° h process have been better than both the random policy and the policy
(random and heuristic). Ablation studies vary mutation

rates/speciation coefficients.

3.8  Advantages, Limitations, and Reproducibility
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based on the heuristics during the tests of average pipes passed,
survival time, and general endurance.

The use of the Neuroevolution of Augmenting Topologies algorithm
in this manner leads to an Al agent trained separately to play Flappy
Bird, and during the whole process, a lot of interesting results come
out, regarding both the neuroevolutionary methods' effectiveness in
game environments and the overall implications for adaptive agent
design. The experiments were conducted under very strict conditions
involving through tuning over hyperparameters and a very strict
fitness evaluation; thus, significant improvements were achieved in
the course of different generations.

One of the main points drawn from this research is the fact that
NEAT is a very effective tool for the gradual and piecewise
development of complex neural architectures that are superior to the
fixed-topology networks by a considerable margin. Agents that began
with very simple policies and a minimal connection of neurons were
gradually transformed, through the mutations, crossovers, and
speciation of the evolutionary process, into ones that could
effectively utilize hidden nodes to form a complex connection
structure that resulted in a very significant enhancement of their
ability to play the game. This kind of outcome goes to the very heart
of the NEAT philosophy - that structure should and can be evolved
instead of being pre-specified. Empirical evidence has shown that the
networks produced by the evolution process have been better than
both the random policy and the policy based on the heuristics during
the tests of average pipes passed, survival time, and general
endurance.

Ablation studies that tested various parameters of mutation and
speciation settings strongly emphasized the necessity of careful
selections of hyperparameters. Populations smaller than 100
experienced quick initial progress followed by a ceiling of
innovation. Very big populations took much longer to get to the same
point without a considerable gain. Likewise, high mutation rates did
not allow patterns to be formed and thus lost them while low rates
made the process of evolution sluggish. The final configuration,
Table 3.1, reached a nice compromise for this area between
exploration and refinement.

These findings imposed a number of limitations which suggested the
following possible future works: mainly, fitness evaluation is very
computing-intensive because it takes thousands of simulation
episodes per generation; this greatly limits the possibilities of rapid
prototyping and large-scale experimentation. For some runs, network
complexity can become huge in an uncontrolled manner giving rise to
agents with nodes and connections that are either redundant or not
used at all. The minimalist bias of NEAT while preventing excessive
complexity may still allow for further slimming down of evolved
solutions through periodic pruning or regularization. Lastly, there
were times when population performance would decline due to
instability, which was very often caused by speciation collapse or
fitness plateauing and this points to the necessity for adaptive
mechanisms that can dynamically adjust the evolutionary pressures.
Another remarkable aspect was the fact that the algorithm was
capable of dealing with noisy reward signals. In the case of gradient-
based deep reinforcement learning, the problem of exploding or
vanishing gradients is very likely, whereas, with the population-based
approach of NEAT, the gradients remained stable even in the
presence of delayed or sparse feedback that was typical for the game
Flappy Bird. Nevertheless, pure neuroevolution is still less sample-
efficient compared to direct policy-gradient or Q-learning algorithms,
which thus may be seen as a trade-off worth exploring by means of
hybrid models.

The qualitative analysis of the evolved gameplay showed that the agents
could react in real-time to pipe configuration and speed changes using
unexpectedly strategies, such as timing their flaps exactly to avoid
crashes or learning to stay at the bottom of the screen to keep their
navigation stable. This points out the power of NEAT in discovering
complex strategies without explicit programming or human teaching.
The NEAT algorithm was thus validated as a practical and competitive
method for developing self-learning agents in complex, dynamic
games. The process described in this paper was efficient and simple to
replicate. Every experiment, along with its configuration files and
evolutionary logs, is provided for the sake of reproducibility. Further
research could extend this work by integrating deep learning concepts
into NEAT, by means of automatic topology pruning or by testing in
input and/or reward spaces with higher dimensions. The excellent
results presented in this paper have put NEAT back into the present
spotlight, thereby establishing it firmly as one of the key players in the
toolkit for evolutionary Al and game learning research.

Figure 3.2: NEAT Evolution Performance Trends
5. Conclusion

The NEAT algorithm was successfully utilized in this project to
create a self-learning Al agent that would independently play
the game of Flappy Bird. The NEAT method gives rise to neural
network topologies and weights that in an incremental manner lead to
the development of complex, adaptable controllers with the
resulting performance of the players evolving through successive
generations of the game. The agent had a real-time input of game state
and was later subjected to standardized fitness metrics, which
averaged performance during randomized simulation episodes, in
learning timely control over flapping. The evolution of our Al in an
efficient manner calls for a proper mixture of exploration and
exploitation. Speciation was used in our method to safeguard promising
new network designs, fitness sharing was used to discourage
populations from becoming too homogeneous and this was all
done through the standard mutation and crossover. Networks that
started with the minimum setup eventually became intricate
architectures that could accommodate the high processing required
for good performance in a chaotic game world. Our confidence was
corroborated by the experimental results that depicted a clear, quick
rise in both average and maximum

fitness in just a few generations.

It is true that this method incurred a significant computational overhead
on account of the many population- based simulations. However, the
trade-off was justifiable and our system was very resistant to "noisy"
data and sparse rewards, two problems that often defeat the gradient-
based learning methods. The evolved gameplay strategies formed a
continuum from very conservative to very risky and their diversity in
the population was indicated by the emergence of different policies.
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There are likely to be further advancements in the area of hybridization
of NEAT with reinforcement learning or deep learning methods that
will lead to better sample efficiency and scalability. Furthermore, the
combination of topology pruning with parallel evolutionary strategies
may enhance performance at lower computational costs. Thus, this
study supports NEAT as a versatile and appropriate technique for the
development of real-time adaptive agents in game settings and at the
same time offers significant contributions to neuroevolution and
evolutionary game Al areas.
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