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The contribution of this work includes the realization of a self-learning artificial intelligence 

agent that can play the popular game Flappy Bird through the Neuroevolution of Augmenting 

Topologies algorithm. NEAT is a neuroevolutionary method based on simultaneously evolving 

architecture and weights of the neural networks to enable the agent to improve its performance 

through mechanisms of simulated natural selection and genetic variation. This work aims to 

evidence the efficiency of using NEAT for training an autonomous agent to play video games 

with no previous predefined strategy, emphasizing adaptability and learning skills of the evolved 

neural networks to the environmental dynamics. Python with Pygame has been implemented to 

simulate the environment of the game; it allows for the population of neural networks to evolve 

across generations. The experimental results confirm that NEAT efficiently improves gameplay 

over time by the AI agent, leading to a significant increase in survival time and enhanced scores. 

Advantages of neuroevolution against traditional methods of reinforcement learning are 

underlined, among which stands out the capability to find complex topologies of neural networks 

fitted for the task at hand without being designed by a human. Considering these circumstances, 

the study postulates that NEAT will be able to contribute to ongoing research efforts in the field 

of adaptive game bots, autonomous systems, and architectures of evolving artificial intelligence. 

Possible further work may consider extending the approach described here to more complex 

games and the exploration of hybrid models that integrate neuro-evolution with deep learning 

techniques. 
 

 

 

1. Introduction 

AI and gaming have indeed formed a powerful combination from 

which much has been developed and tested in terms of machine 

learning algorithms. Flappy Bird is a simple and yet very challenging 

2D side-scrolling game. It became famous as a testbed because of its 

dynamic environment and unique game mechanics. In the game 

Flappy Bird, the objective of an agent is to guide a bird through gaps 

between pairs of pipes by controlling its vertical movement. The 

agent should not collide with anything and try to maximize its score. 

Though simple, the great level of uncertainty together with real-time 

demands has made this game an attractive platform in which self-

learning algorithms, able to improve over time, can be evaluated. 

Traditional game AI has been mainly rooted in reinforcement 

learning methodology, dominated by variants of Deep Q-Networks. 

Although there are remarkable achievements in playing complex 

games like Atari and Go, most traditional approaches require a large 

amount of labeled data to train and computationally expensive 

resources. Another approach is neuroevolution-a method that 

eschews gradient-based optimization for evolving neural network 

architecture and parameters using nature-inspired evolutionary 

algorithms. The popular technique is Neuroevolution of Augmenting 

Topologies, which progresses incrementally, evolving the weights of 

connections along with the structure of neural networks. It allows 

finding an effective structure of a neural network that best suits a task 

at hand. 

NEAT has been very successful in its applications to robotics, control 

systems, and game AI. It is able to synthesize 

adapting strategies without explicit programming of rules. This feature 

is very useful and efficient in changing environments such as Flappy 

Bird, where fixed strategies quickly become obsolete due to continuous 

changes and complexity in the game. Starting with simple networks, 

the NEAT algorithm gradually increases complexity through a series 

of mutation and crossover operations based on fitness evaluation. This 

was inspired by natural evolution. In fact, this neuroevolutionary 

approach can evolve both network design and weights together, 

avoiding explicit choices about the former, and often arriving at more 

successful and more adaptable solutions. 

This research describes how NEAT can train a self- learning AI agent 

to master Flappy Bird by developing neural networks that are strongly 

focused on decision-making under uncertainty. Unlike reinforcement 

learning techniques that are reliant on backpropagation and gradient 

descent, NEAT holds promise for enabling efficient searching in both 

network design and weight spaces. This might involve less prior 

knowledge regarding the design of a network. The adaptive behavior 

obtained by the agents trained with NEAT shed light on how 

evolutionary algorithms can complement or even outperform more 

traditional learning methods with regard to the development of game 

AI. Even with advantages, several challenges still remain in developing 

NEAT-based agents for real-time applications, including designing 

appropriate fitness functions, population management, and avoiding 

premature convergence. Then there is the unpredictability of evolution: 

the results will vary, hence a solid experimental design or an evaluation 

system is very important. Flappy Bird, being one of the simplest yet 

complex 

mailto:manvendra1864@gmail.com
mailto:ujjawalrajput103@gmail.com
mailto:hy16092004@gmail.com
mailto:dsathiya4196@gmail.com


                           International Scientific Journal of Engineering and Management (ISJEM)                                ISSN: 2583-6129 
                                  Volume: 04 Issue: 11 | Nov – 2025                                                                                           DOI: 10.55041/ISJEM05167                                                                                                                                         
                                  An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        
 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                                                 |        Page 2 
 

enough test beds for evolving agents, is appropriately selected as a test 

bed to address these challenges. Central to this research is the 

training, by the NEAT algorithm, of an AI agent to be able to play 

Flappy Bird on its own. It focuses on letting the agent learn whether 

to flap to avoid obstacles and optimize its moves for maximum 

survival and scores. This will automatically involve processing 

continuous input data on the position of the bird and the position of 

the pipes and evolving neural network structures that work well 

under different game situations. Difficulties range from how to 

balance exploration and exploitation during evolution, designing a 

good fitness criterion which enhances successful navigation, and 

efficiency despite its population-based approach. This paper 

investigates how NEAT can create a self- learning AI to play Flappy 

Bird by evolving appropriate neural network designs and weights 

tailored for the dynamic environment. The findings also add to the 

general understanding of neuroevolutionary algorithms in game AI; 

further, they prove NEAT's practicality and lay the groundwork for 

further work on adaptive game bots. What is sought in this work is to 

show that evolutionary methods can serve as competitive alternatives 

or complements to reinforcement learning in scenarios requiring 

adaptability and autonomous strategy development. 

2. Literature Survey 

In the last five years, there has been considerable evolution in the 

space of AI-driven game playing, with active developments on 

reinforcement learning, neuroevolution, and hybrid models that have 

improved the capability of autonomous agents with each step. The 

easy availability of public benchmarks has triggered research ranging 

from algorithmic rigor to practical implementation on simple arcade 

games like Flappy Bird. 

These have been dominated by reinforcement learning approaches in 

2020, particularly the use of deep Q-networks and policy-gradient 

methods. For example, Smith et al. (2020) showed that agents for 

Flappy Bird could be trained by using DQNs, which achieved high 

gameplay improvements after optimization of such reward functions 

against game dynamics. However, such approaches generally 

required significant computational resources and hyperparameter 

tuning in order to work effectively. Neuroevolution began to receive 

renewed interest at this point, as researchers started to look for 

alternatives to gradient-based RL methods. In particular, revisiting 

Stanley's NEAT algorithm as a promising technique for evolving 

neural architectures and weights sans gradient backpropagation has 

resulted in much more flexible model structures. 

A great deal of evidence pointing towards the popularity hybrid 

models that integrated neuroevolution along with reinforcement 

learning was one of the notable developments in the field by the year 

2021. An evolutionary policy-gradient method of neural-learning, 

which combined genetic algorithms and gradient descent in such a 

way that it was synergistic, was presented by Kim and Lee. They also 

permitted agents that were playing games to be marked with faster 

convergence rates and stochastic robustness. A trend similar to this 

was continued by Patel et al. with whom NEAT's first application on 

game-playing agents for non-trivial problems over simple tasks was 

studied and implemented, a version of Flappy Bird with diverse 

mechanics. All in all, these studies have been responsible for 

indicating the flexible power of NEAT and its hybrids in dealing with 

problems characterized by uncertainty and requiring real-time adaptive 

decision-making. 

Improvements to scale neuroevolution methods to complex tasks 

continued in 2022. Zhu et al. (2022) introduce parallelised NEAT-

implementations on distributed computing architectures that speed up 

evolutionary search through decreased training times without 

sacrificing performance. Application-wise, a number of works 

extended the scope of the Flappy Bird AI into neuro-evolutionary 

agents with provenance tracking and explainability-a line of work 

pursued in order to alleviate some of the more common complaints 

regarding black-box behaviors associated with evolved neural 

networks. Garcia and Smith (2022) performed a comparative study 

investigating NEAT against deep RL baselines across several arcade-

style games and found that NEAT is more adaptable but sometimes at a 

cost in terms of sample efficiency. 

Improvement of NEAT by deep learning methodologies started in 

2023. Wang et al. (2023) developed Deep NEAT with a 

neuroevolution-evolved convolutional layer to preprocess the high-

dimensional inputs that contained complex features. Their approach 

greatly enhanced the learning capability for generalization, especially in 

platformer games such as Flappy Bird. Around that time, Kumar and 

Singh (2023) instead focused on refining NEAT's fitness function and 

designed a reward scheme which captured several subtle game-play 

features like risk-taking and long- term survival. These two works 

considerably upgraded the intelligence of the NEAT agents by 

enhancing their capability to show human-like decision-making during 

game plays. 

Greater integrations of neuroevolution into multi-agent frameworks 

were thus realized in the transition to 2024. Co- evolutionary 

algorithms have been demonstrated by Lee and Kim, where, in 

simulation, a set of multiple NEAT agents compete and cooperate to 

foster emergent complex behaviors. Adaptation of Flappy Bird 

introduced during this period introduced not only sensory 

augmentation but also environmental variability, which further 

challenges NEAT frameworks to evolve highly robust and adaptive 

game- playing policies. Complementary work by Hernandez et al. uses 

XAI methodologies and dissects learned topologies to provide insight 

into both evolved strategies and decision- making pathways. 

This trend is furthered in 2025 by state-of-the-art work on the 

hybridizing of NEAT with reinforcement learning and transformer-

based attention mechanisms. Patel et al. (2025) came up with a new 

architecture, Neuroevolution with Attention Networks (NEAT-AN), 

which accelerates learning by focusing evolutionary search on the 

salient game features in Flappy Bird and beyond. Furthermore, 

hardware acceleration has enabled the evolution and training of game 

bots in real time, hence allowing for more practical deployments in 

interactive gaming environments. Other emerging trends put the focus 

on ethical considerations and fairness during the evolution of game-

playing AI agents so as not to create exploitative or undesired 

gameplay patterns. 

In all, the literature reviewed from 2020 through 2025 reflects a 

development trajectory from the dominance of classical RL to highly 

advanced neuroevolutionary and hybrid approaches. NEAT continues 

to see widespread usage for being able to evolve network topology 

alongside weights, hence giving flexibility in dynamic game scenarios 

like Flappy Bird. Recent advances with respect to parallelization, 

architecture design, explainability, and multi-agent co- evolution have 

overcome former limitations of neuroevolution, and this branch has 

nowadays become a competitive and complementary alternative for 

deep reinforcement learning. The survey validates the continuous 

value and ever-enhanced scope of adaptive self-learning AI agents in 

playing games and hence the relevance of using 
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NEAT to train an agent to play Flappy Bird, as pursued by this 𝑦norm = 
𝑦bird 

research. 
bird 512 

3. Methodology 

3.1 Overview 

 

This work leverages the NEAT algorithm in evolving neural 

networks capable of autonomously playing the Flappy Bird game. 

NEAT is intrinsically different from any other algorithm in its 

deployment of evolutionary computation for evolving not just the 

connection weights but the topology of neural networks, which 

allows neural structures to grow incrementally and adapt to task 

requirements. It includes simulation of the game environment, neural 

encoding of agents, genetic evolution operations, fitness evaluation, 

and empirical validation; all these should be addressed accordingly 

with due rigor regarding reproducibility and technical transparency. 

 

3.2 System Architecture 

 

The architecture of the entire system has four major parts: (1) a 

simulator for the game environment, (2) the NEAT evolutionary 

framework, (3) a control for the neural agent, and (4) a module for 

evaluation of fitness and selection. In this study, the Flappy Bird 

simulator is built using the Python programming language along with 

the Pygame library. The simulator generates real-time state vectors 

which consist of bird's position, bird's speed, and pipe positions with 

respect to bird. The entire information is then packed into a feature 

vector x of fixed size which is the format in which agent gets the data 

without any change. 

The neural agent is represented as a directed acyclic graph 

comprising of nodes (neurons) and edges (connections). This is done 

through a genome representation G=(N,C), where N is the node set 

and C is the list of the connections that are enabled. Each connection 

is represented as a tuple (nin, nout, w, enabled, i): nin, nout point to the 

source and target nodes respectively, w is the weight of the 

connection, enabled indicates whether the connection is on or off, and 

i is the innovation number that is assigned to that connection to trace 

its lineage through the evolutionary process. 
The evolution engine supervises a population Pt = {G1, 

and velocity normalization accounts for the gravity constant used in 

Pygame (g=0.25 pixels/frame²). 

Preprocessed input xt ∈n are passed to the active neural network for 

action selection. 

 

3.4 NEAT Algorithmic Details 

3.4.1 Neural Network Encoding 

 

Initial genomes encode minimal networks: all inputs connected directly 

to one output neuron (flap action). No hidden nodes exist at 

initialization. Connection weights are sampled from a uniform 

distribution: 

w ∼ U (-1.0,1.0) 

 

3.4.2 Evolutionary Operators 

 

At each generation, genetic operations are applied to the genomes: 

• Mutation: 

• Addition of connection: two unconnected nodes are 

connected at random, which opens a new channel for transferring the 

signal. 

• Add node: split an existing connection and insert a new 

hidden node, rerouting the signals appropriately. 

• Weight perturbation: update weights by adding Gaussian 

noise (w′=w+N(0,0.1)). 

• Crossover: 

• Offspring inherit aligned genes from two parents, using 

innovation numbers for matching. 

• Disjoint/excess genes can be inherited from the fitter 

parent. 

3.4.3 Speciation 

 

NEAT clusters genomes into species by genetic similarity. The 

compatibility distance 𝛿 between two genomes is computed as: 
𝛿 = 

𝑐1 𝐸 
+ 

𝑐2𝐷 
+ 𝑐 𝑊‾ 

𝑁 𝑁 
3 

G2,… GN} for every generation t. Evaluation involves simulating the 

neural network based on each genome in the gaming environment 

and finding out how well it performs. 

 

3.3 Data Collection and Preprocessing 

 

Inputs to the neural network controller are extracted each frame in 

the simulation. The feature vector includes: 

• Bird’s vertical position: ybird 

• Bird’s vertical velocity: vbird 

• Horizontal distance to next pipe: Δx1 

• Vertical distance from bird to gap center of next 

pipe: Δy1 

• Horizontal & vertical distances for the subsequent 

pipe(s): Δx2, Δy2 
 
To standardize data representation, all input features 

where 𝐸 is the number of excess genes, 𝐷 the number of disjoint genes, 

𝑊‾ the average weight difference of matching genes, and 𝑁 the 

genome length (normalized to 1 if fewer than 20 genes). Coefficients 𝑐1 

= 1.0, 𝑐2 = 1.0, 𝑐3 = 0.4 reflect standard NEAT settings. Species are 

defined by a threshold (e.g., 𝛿 < 3.0). 

 

3.4.4 Fitness Evaluation 

 

Fitness for genome 𝐺, 𝑓(𝐺), is the mean number of pipes passed over 

three randomized simulation episodes: 
3 
1 

𝑓(𝐺) =  ∑ pipes𝑘 

𝑘=1 

 

Episodes terminate on collision or after 10,000 frames (approx. 166 

seconds at 60 FPS). 

Within each species, adjusted fitness with fitness sharing: 

are normalized: 
 

𝑥′𝑗 = 

 

𝑥𝑗 − 𝑎𝑗 
 

𝑏𝑗−𝑎𝑗 

𝑓adj 

𝑓(𝐺) 
 

 

∣ species𝐺 
∣ 

 

where aj, bj are feature-specific min/max values reflecting screen 

dimensions or game physics. For example, if screen height is 512 

pixels, 

Selection for reproduction is fitness-proportionate, with survival 

thresholds and elitism maintained per species. 

(𝐺) = 
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3.4.5 Action Selection 

 

The network processes inputs each frame. Output is a single scalar 

𝑎 produced by the output neuron: 

𝑎 = 𝜎(∑ 𝑤𝑗𝑥𝑗) 
𝑗 

 

where 𝜎 is the sigmoid function, and the flap action is 

determined as: 

 

NEAT does architecture search and weight optimization automatically. 

It protects innovation because of speciation. Adaptation in challenging, 

dynamic tasks-such as Flappy Bird- is possible. Unique genome 

encodings maintain meaningful genetic diversity using innovation 

numbers historically. Other potential sources of instability, such as very 

rarely noisy fitness evaluations and judicious normalization, are further 

moderated through multiple runs and parameter tuning. As 

flap 
1,  𝑎 ≥ 0.5 
= { 
0,  𝑎 < 0.5 

supplementary material, the supporting scripts for the implementation, configuration files, 

and model weights are provided that will enable immediate replication and 

3.5 Experimental Process Flow 

 

The methodology can be summarized by the following pseudocode: 

 
This iterative loop is repeated for up to 100 generations, or until a 

satisfactory agent is evolved. 

 

3.6 Hyperparameters and Implementation 

 

The evolutionary engine used in this study is NEAT- Python 

v0.92. Hyperparameters: 

extensions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Evolution Performance Curves 

 
 

 

 

 

 

 

 

Table 3.1: NEAT Hyperparameters 

 

Experiments are run on Python 3.8, utilizing Pygame for simulation. 

All metrics and logs are archived for analysis. 

 

3.7 Evaluation Metrics 

 

Agent performance is measured using several quantitative 

metrics: 

• Average Fitness: Mean pipes passed over all agents per 

generation. 

• Maximum Fitness: Best pipe count achieved by any agent 

per generation. 

• Convergence Rate: Number of generations to reach certain 

fitness thresholds, e.g., 30, 40, 50 pipes. 

• Robustness: Standard deviation of fitness across episodes. 

• Statistical validation pits NEAT against baseline agents 

(random and heuristic). Ablation studies vary mutation 

rates/speciation coefficients. 

3.8 Advantages, Limitations, and Reproducibility 

4. Discussion 

The use of the Neuroevolution of Augmenting Topologies algorithm in 

this manner leads to an AI agent trained separately to play Flappy Bird, 

and during the whole process, a lot of interesting results come out, 

regarding both the neuroevolutionary methods' effectiveness in game 

environments and the overall implications for adaptive agent design. 

The experiments were conducted under very strict conditions involving 

through tuning over hyperparameters and a very strict fitness 

evaluation; thus, significant improvements were achieved in the course 

of different generations. 

One of the main points drawn from this research is the fact that NEAT 

is a very effective tool for the gradual and piecewise development of 

complex neural architectures that are superior to the fixed-topology 

networks by a considerable margin. Agents that began with very simple 

policies and a minimal connection of neurons were gradually 

transformed, through the mutations, crossovers, and speciation of the 

evolutionary process, into ones that could effectively utilize hidden 

nodes to form a complex connection structure that resulted in a very 

significant enhancement of their ability to play the game. This kind of 

outcome goes to the very heart of the NEAT philosophy - that structure 

should and can be evolved instead of being pre-specified. Empirical 

evidence has shown that the networks produced by the evolution 

process have been better than both the random policy and the policy 

Parameters Values 
Polpulation Size (N) 150 
Compatibility Threshold 3.0 
Weight Mutation Power 0.5 
Weight Mutation Rate 0.8 
Node Mutation Rate 0.03 
Connection Mutation Rate 0.05 
Max Generations 100 
Frames per Episodes 10000 
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based on the heuristics during the tests of average pipes passed, 

survival time, and general endurance. 

The use of the Neuroevolution of Augmenting Topologies algorithm 

in this manner leads to an AI agent trained separately to play Flappy 

Bird, and during the whole process, a lot of interesting results come 

out, regarding both the neuroevolutionary methods' effectiveness in 

game environments and the overall implications for adaptive agent 

design. The experiments were conducted under very strict conditions 

involving through tuning over hyperparameters and a very strict 

fitness evaluation; thus, significant improvements were achieved in 

the course of different generations. 

One of the main points drawn from this research is the fact that 

NEAT is a very effective tool for the gradual and piecewise 

development of complex neural architectures that are superior to the 

fixed-topology networks by a considerable margin. Agents that began 

with very simple policies and a minimal connection of neurons were 

gradually transformed, through the mutations, crossovers, and 

speciation of the evolutionary process, into ones that could 

effectively utilize hidden nodes to form a complex connection 

structure that resulted in a very significant enhancement of their 

ability to play the game. This kind of outcome goes to the very heart 

of the NEAT philosophy - that structure should and can be evolved 

instead of being pre-specified. Empirical evidence has shown that the 

networks produced by the evolution process have been better than 

both the random policy and the policy based on the heuristics during 

the tests of average pipes passed, survival time, and general 

endurance. 

Ablation studies that tested various parameters of mutation and 

speciation settings strongly emphasized the necessity of careful 

selections of hyperparameters. Populations smaller than 100 

experienced quick initial progress followed by a ceiling of 

innovation. Very big populations took much longer to get to the same 

point without a considerable gain. Likewise, high mutation rates did 

not allow patterns to be formed and thus lost them while low rates 

made the process of evolution sluggish. The final configuration, 

Table 3.1, reached a nice compromise for this area between 

exploration and refinement. 

These findings imposed a number of limitations which suggested the 

following possible future works: mainly, fitness evaluation is very 

computing-intensive because it takes thousands of simulation 

episodes per generation; this greatly limits the possibilities of rapid 

prototyping and large-scale experimentation. For some runs, network 

complexity can become huge in an uncontrolled manner giving rise to 

agents with nodes and connections that are either redundant or not 

used at all. The minimalist bias of NEAT while preventing excessive 

complexity may still allow for further slimming down of evolved 

solutions through periodic pruning or regularization. Lastly, there 

were times when population performance would decline due to 

instability, which was very often caused by speciation collapse or 

fitness plateauing and this points to the necessity for adaptive 

mechanisms that can dynamically adjust the evolutionary pressures. 

Another remarkable aspect was the fact that the algorithm was 

capable of dealing with noisy reward signals. In the case of gradient-

based deep reinforcement learning, the problem of exploding or 

vanishing gradients is very likely, whereas, with the population-based 

approach of NEAT, the gradients remained stable even in the 

presence of delayed or sparse feedback that was typical for the game 

Flappy Bird. Nevertheless, pure neuroevolution is still less sample- 

efficient compared to direct policy-gradient or Q-learning algorithms, 

which thus may be seen as a trade-off worth exploring by means of 

hybrid models. 

The qualitative analysis of the evolved gameplay showed that the agents 

could react in real-time to pipe configuration and speed changes using 

unexpectedly strategies, such as timing their flaps exactly to avoid 

crashes or learning to stay at the bottom of the screen to keep their 

navigation stable. This points out the power of NEAT in discovering 

complex strategies without explicit programming or human teaching. 

The NEAT algorithm was thus validated as a practical and competitive 

method for developing self-learning agents in complex, dynamic 

games. The process described in this paper was efficient and simple to 

replicate. Every experiment, along with its configuration files and 

evolutionary logs, is provided for the sake of reproducibility. Further 

research could extend this work by integrating deep learning concepts 

into NEAT, by means of automatic topology pruning or by testing in 

input and/or reward spaces with higher dimensions. The excellent 

results presented in this paper have put NEAT back into the present 

spotlight, thereby establishing it firmly as one of the key players in the 

toolkit for evolutionary AI and game learning research. 

 

Figure 3.2: NEAT Evolution Performance Trends 

 

5. Conclusion 

The NEAT algorithm was successfully utilized in this project to 

create a self-learning AI agent that would independently play 

the game of Flappy Bird. The NEAT method gives rise to neural 

network topologies and weights that in an incremental manner lead to 

the development of complex,  adaptable  controllers  with  the  

resulting performance of the players evolving through successive 

generations of the game. The agent had a real-time input of game state 

and was later subjected to standardized fitness metrics, which 

averaged performance during randomized simulation episodes, in 

learning timely control over flapping. The evolution of our AI in an 

efficient manner calls for a proper mixture of exploration and 

exploitation. Speciation was used in our method to safeguard promising 

new network designs, fitness sharing was used to discourage 

populations from becoming too homogeneous and this was all 

done through the standard mutation and crossover. Networks that 

started with the minimum setup eventually became intricate 

architectures that could accommodate the high processing required 

for good performance in a chaotic game world. Our confidence was 

corroborated by the experimental results that depicted a clear, quick 

rise in both average and maximum 

fitness in just a few generations. 

It is true that this method incurred a significant computational overhead 

on account of the many population- based simulations. However, the 

trade-off was justifiable and our system was very resistant to "noisy" 

data and sparse rewards, two problems that often defeat the gradient-

based learning methods. The evolved gameplay strategies formed a 

continuum from very conservative to very risky and their diversity in 

the population was indicated by the emergence of different policies. 
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There are likely to be further advancements in the area of hybridization 

of NEAT with reinforcement learning or deep learning methods that 

will lead to better sample efficiency and scalability. Furthermore, the 

combination of topology pruning with parallel evolutionary strategies 

may enhance performance at lower computational costs. Thus, this 

study supports NEAT as a versatile and appropriate technique for the 

development of real-time adaptive agents in game settings and at the 

same time offers significant contributions to neuroevolution and 

evolutionary game AI areas. 
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