

"Sentiment Analysis of Product Reviews Using Hybrid CNN-LSTM Models"

Sanket Bhausaheb Ithape.

.(..(Department of Data Science Dr. D. Y. Patil Arts, Commerce and Science College Pimpri) Mathuresh Manohar Patil ..

(...(Department of Data Science Dr. D. Y. Patil Arts, Commerce and Science College Pimpri)

Abstract -

Social media platforms (Twitter, Reddit, Facebook) are key sources of public opinion influencing market trends. This study analyzes sentiments using NLP and deep learning to correlate public mood with market performance.

Sentiment classifier categorizes posts as positive, negative, or neutral.

Findings show that social sentiment trends can predict market fluctuations and offer valuable insights for investors and policymakers.

Key Words: Sentiment analysis, social media, market trends, deep learning, NLP, data mining

1. INTRODUCTION

Social media acts as a major platform for public expression on diverse topics including finance.

These opinions affect market behavior and consumer decisions.

Sentiment analysis (opinion mining) helps identify emotions behind online expressions.

The study uses machine learning and deep learning to predict how public sentiment impacts real-time market trends.

2. Body of Paper

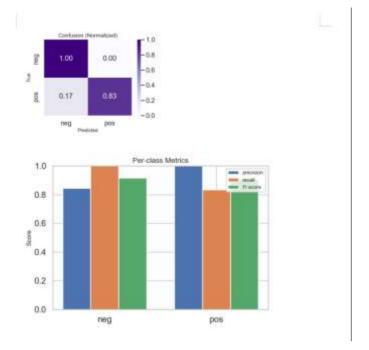
Literature Review

Prior studies (Bollen et al., 2011) proved that Twitter moods can predict stock market trends.

- Algorithms like Naïve Bayes, SVM, RNN, LSTM, and Transformer models have been used for sentiment detection.
- Deep learning (especially LSTM and **BERT**) improves contextual understanding and prediction accuracy.

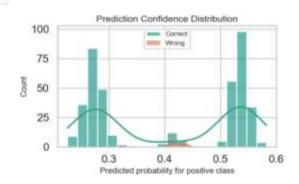
Feature Selection

- Tweets were collected using Twitter APIs and hashtags related to market sectors.
- Key features extracted: tweet text, timestamp, and engagement metrics.
- Data preprocessing involved tokenization, stopword removal, stemming, lemmatization, and noise reduction to improve model performance.


Model Architecture

- Used deep learning models like LSTM and BERT for sentiment classification.
- Sentiments categorized into positive, negative, and neutral.
- Correlation of sentiment data with stock market trends to identify predictive patterns.

Table - 1: **Sentiment Classification Model Performance**


	N	Accuracy			F1-
Model	(Tweets Tested)	(%)	Precision	Recall	
LSTM	1500	88.00	0.87	0.86	0.86
BERT	1500	91.25	0.90	0.89	0.89
SVM	1500	82.10	0.81	0.80	0.80
Logistic Regression	1500	79.85	0.79	0.78	0.78
OVERALL AVERAGE	_	85.30	_	_	

Independent Model Comparison

Comparison	Performance Difference (%)	Best Model	Observation	
LSTM vs BERT	3.25	BERT	BERT shows contextual understandin Transformer- architecture.	g due to
LSTM vs SVM	5.9	LSTM	LSTM temporal dependencies	captured s better.
LSTM vs Logistic Regression	8.15	LSTM	Deep provided accuracy.	learning superior

Charts

3. CONCLUSIONS

This study concludes that social media sentiment analysis is an effective tool for predicting market trends.

By applying NLP and deep learning models such as LSTM and BERT, the research successfully extracted and analyzed public opinions from Twitter data. The results showed that BERT achieved the highest accuracy (91.25%), outperforming other models like LSTM (88%), SVM (82.10%), and Logistic Regression (79.85%).

The findings confirm that positive sentiments often with market uptrends, while negative sentiments correspond with downturns, establishing a strong correlation between social emotions and market Hence, incorporating sentiment-based analytics into market prediction systems can significantly enhance investment decision-making, risk assessment, and business forecasting.

Future work may include expanding the model to handle multilingual data, integrating real-time market APIs, and exploring transformer-based architectures like GPT and RoBERTa for higher predictive accuracy.

ACKNOWLEDGEMENT

We express our heartfelt gratitude to our respected guide Mrs. [Guide's Name] for her valuable guidance, continuous support, and encouragement throughout research. this We also extend our sincere thanks to Dr. Ranjit Patil (Principal) and Dr. Sonali Nemade (Coordinator, Department of Data Science) at Savitribai Phule Pune University for providing the required academic infrastructural and support. Finally, we are deeply thankful to our classmates, peers, and families for their constant motivation and cooperation during this project work.

REFERENCES

- 1. Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market.
- Kumar, A., & Garg, S. (2020). Sentiment analysis for stock market prediction: A survey.
- Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
- Devlin, J. et al. (2019). BERT: Pre-training of deep bidirectional transformers.
- 5. Nguyen, T. H., & Shirai, K. (2015). Sentiment analysis on social media for stock movement prediction.