
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05090

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Signspeak – Sign Language Translator Bot

DR.V. SHANMUGA PRIYA 1, AVANTHIKA R 2

Assistant Professor1, Student of CS2

Sri Krishna Arts and Science College, Kuniyamuthur - Coimbatore Shanmugapriyav@skasc.ac.in 1,

avanthikar24bcs104@skasc.ac.in 2

ABSTRACT

SignSpeak is an innovative solution designed to bridge the communication gap between hearing individuals and the deaf

or hard-of-hearing community. The system translates spoken language or written text into corresponding sign language

gestures or instructional representations, enabling seamless and real-time communication. By leveraging advanced speech

recognition and natural language processing techniques, SignSpeak accurately captures and interprets audio input, while

also allowing direct text input for versatile use across different scenarios. The processed input is then mapped to a

structured sign language database, which produces either animated gestures or detailed instructional steps, ensuring clarity

and ease of understanding for the user.

The platform incorporates an intuitive user interface that supports real-time feedback and interaction, making it accessible

for both educational and practical applications. SignSpeak aims to empower individuals, institutions, and organizations to

communicate inclusively, reducing social barriers and enhancing accessibility. Additionally, the system is designed to

support multiple sign language dialects and can be extended with new gesture sets, providing scalability and adaptability

for global deployment. By integrating cutting-edge technologies in audio processing, text analysis, and animation,

SignSpeak offers an effective, reliable, and user-friendly tool for fostering inclusive communication and promoting social

awareness.

1.INTRODUCTION

The Sign Language Translator Board is an innovative

assistive communication system designed to bridge the

gap between hearing individuals and the deaf or hard-of-

hearing community by providing an intuitive, real-time

translation of spoken or written language into sign

language instructions. The proposed system accepts

either text or audio input and then processes this input

through a translation engine that maps words, phrases,

and sentences to their equivalent sign language gestures.

Instead of displaying signs as complex animated avatars

or requiring specialized training in sign language, the

system is designed to guide the hearing individual step

by step by giving clear, human-readable and action-

oriented instructions such as “raise your right hand,”

“point to your chin,” or “wave your hand,” which can

then be physically performed to communicate effectively

with the deaf person.

1.1 OBJECTIVE OF THE PROJECT

The objective of the Sign Language Translator Board

project is to develop an innovative system that simplifies

communication between hearing individuals and the deaf

or hard-of-hearing community by providing a real-time

translation of text or audio into step-by-step sign

language instructions. Unlike traditional systems that

rely on animated avatars or require prior knowledge of

sign language, this board is designed to guide users with

clear and easy-to-follow directions such as “point to your

chin” or “wave your hand,” enabling anyone to perform

the gestures and communicate effectively with a deaf

person. The main goal is to make communication

inclusive and accessible in everyday scenarios such as

education, healthcare, workplaces, and public services

where the lack of sign language knowledge often creates

barriers.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05090

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

1.2 PROBLEM STATEMENT

Communication is one of the most fundamental human

needs, yet millions of deaf and hard-of-hearing

individuals face significant barriers in their daily lives

due to the lack of widespread knowledge of sign

language among the general population. This

communication gap leads to challenges in education,

workplaces, healthcare, customer services, and even

casual social interactions, often resulting in

misunderstandings, dependency on interpreters, and

social isolation.

While interpreters and text-based solutions exist, they are

not always accessible, affordable, or available in

realtime.SignSpeak addresses this problem by

envisioning a real-time translation tool that uses

computer vision and AI to recognize gestures, signs, and

expressions, and converts them into speech/text, while

also enabling the reverse translation to help nonsigners

communicate effectively.

 2. SYSTEM ANALYSIS

The system analysis provides a comprehensive overview

of the requirements, constraints, and use cases that form

the foundation for the proposed application. From a

functional perspective, the system must deliver full

CRUD (Create, Read, Update, Delete) capabilities for

managing gestures, ensuring that new gestures can be

added, existing ones modified, retrieved for use, or

removed when outdated. A core requirement is the

translation service, which enables the conversion of

textual or audio input into sign language gestures in real

time, thereby bridging communication gaps and

enhancing accessibility. RESTful APIs play a central role

by enabling seamless communication across system

layers, ensuring interoperability with external

applications, and supporting integration in diverse

deployment environments. Nonfunctional requirements

emphasize usability through an intuitive interface,

scalability to accommodate growing user bases, security

to protect sensitive data and ensure safe transactions, and

maintainability to simplify updates, debugging, and

feature enhancements. The system is constrained to

Python 3.x as the development language, with Flask as

the lightweight web framework, SQL Alchemy for

ORM support, and SQLite, PostgreSQL, or MySQL as

database options depending on deployment needs. Key

use cases include gesture management, where users or

administrators maintain gesture repositories.

2.1. EXISTING SYSTEM

1. SignAll

a. Primarily designed for sign language to text/speech

(reverse of your system).

b. Uses multiple cameras and sensors to track

hand/arm/facial movements.

c. Strength: Real-time recognition of sign language.

d. Limitation: Hardwareheavy, not designed for audio

→ sign output.

2. Google’s Live Transcribe

(Accessibility Service)

a. Converts speech → realtime captions (text) on

Android devices.

b. Widely used by the deaf/hard-of-

hearing community.

c. Limitation: Provides text only, no sign language

visualization.

3. ASL Animated Avatars / Sign

Language Avatars

a. Research systems (e.g., University of Hamburg’s

SiGML avatars, VCom3D’s SigningAvatar).

b. Convert text → sign animations using predefined sign

dictionaries and avatar rendering.

c. Limitation: Often rulebased, lack natural facial

expressions & fluidity → appear robotic. 4. Microsoft

 Kinect-based

Prototypes

a. Some research prototypes map spoken words → sign

gestures using Kinect sensors + avatar output.

b. Limitation: Small vocabulary, not scalable, and

mainly experimental.

5. Mobile Apps (basic versions)

a. A few apps exist that attempt speech → animated

sign output (e.g., Hand Talk App, developed in Brazil).

b. Use cartoon avatars to show Brazilian Sign Language

(Libras).

c. Limitation: Focused on specific sign languages,

limited accuracy, often not natural-looking.

 GAPS IN EXISTING SYSTEM

• Most systems focus on sign → text/speech, not the

reverse.

• Speech → sign systems exist, but they are rule-based,

robotic, or limited to specific languages (ASL,

Libras).

• Lack of context-aware translation

(e.g., grammar differences, idioms).

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05090

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

• Poor support for non-manual signs (facial

expressions, body posture), which are crucial for

meaning.

• Limited scalability and real-time performance for

everyday use.

2.2. PROPOSED SOLUTION

To overcome the communication barriers faced by the

deaf and hard-ofhearing community, SignSpeak

proposes an intelligent system that translates spoken

language (speech/audio) into sign language

gestures and animations in real time. Unlike existing

solutions that are either text-only or rely on limited,

robotic avatars, SignSpeak integrates speech

recognition, natural language processing, and

advanced avatar animation to deliver a more natural

and inclusive experience.

The system first captures spoken input through a

microphone or audio source, which is then processed

using a speech-totext engine. The transcribed text is

analyzed by a language processing module that

converts the spoken-language syntax into sign-language

grammar, ensuring accurate meaning representation. The

processed output is then mapped to a sign dictionary,

with unknown terms handled via finger-spelling. Finally,

a 3D avatar rendering module generates smooth,

expressive sign animations, including hand movements,

body posture,

and facial expressions, which are essential for natural

communication in sign languages.

2.3. HARDWARE & SOFTWARE SPECIFICATION

2.3 (a) HARDWARE SPECIFICATION

The HP Chromebook x360 14aca0506TU comes

equipped with an Intel Celeron N4020 dual-core

processor, offering a base clock speed of 1.1 GHz with a

burst frequency of up to 2.8 GHz, paired with a 4 MB L2

cache. It features 4 GB LPDDR4-2400 MHz RAM that

is soldered onto the motherboard and is nonexpandable.

For storage, it provides 64 GB eMMC, sometimes

bundled with 100 GB Google Cloud storage for one year.

The graphics are powered by integrated Intel UHD

Graphics from the Celeron N4020.

 Processor (CPU)

The laptop is powered by an Intel Celeron N4020 dual-

core processor, running at a base clock speed of 1.1 GHz

and capable of bursting up to 2.8 GHz. It comes with a 4

MB L2 cache, offering sufficient performance for

lightweight tasks, browsing, and educational use.

Memory (RAM)

It has 4 GB LPDDR4-2400 MHz RAM, which is

soldered directly onto the motherboard. The memory is

nonexpandable, meaning upgrades are not possible,

making it best suited for basic multitasking.

Storage

The Chromebook comes with 64 GB eMMC storage,

which is reliable for light data storage. Additionally,

buyers may receive 100 GB of Google Cloud storage free

for one year, making it easier to store files online.

Graphics

Graphics are handled by Integrated Intel UHD Graphics

(from the Celeron N4020). While not designed for heavy

gaming, this is adequate for HD video playback,

browsing, and standard applications.

Display

It features a 14-inch HD touchscreen with a resolution of

1366 × 768 pixels. The screen has a micro-edge

BrightView design, brightness of ~220 nits, and covers

about 45% NTSC color gamut. The 2-in-1 convertible

design allows it to be used in tablet, tent, or display

modes.

Connectivity & Networking

The Chromebook supports Wi-Fi 5 (802.11 a/b/g/n/ac)

and Bluetooth 5, powered by the Realtek RTL8822CE

chipset. It also supports MU-MIMO for better wireless

performance with multiple devices.

Ports & Input

It comes with 2 USB Type-C ports (supporting Power

Delivery and DisplayPort 1.2), and likely 2 USB Type-A

ports for standard connections.

Additionally, it has a

headphone/microphone combo jack and an island-style

 chiclet keyboard for comfortable typing.

Audio

For audio, the Chromebook includes dual speakers,

offering decent sound quality for video streaming and

online classes. Battery & Power

It is powered by a 2-cell 47 Wh Li-ion battery, offering

good backup for regular use. Charging is done via USB-

C, and while some variants support fast charging (50% in

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05090

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

~45 minutes), this model may vary. Dimensions &

Weight

The device is lightweight and portable, weighing 1.49 kg

(3.28 lbs). Its dimensions are approximately 32.6 × 22 ×

1.8 cm, making it slim and easy to carry.

2.3(b) SOFTWARE

SPECIFICATION

The proposed system is designed to bridge the

communication gap between hearing or speech-impaired

individuals and others by providing a reliable,

databasebacked platform for gesture management and

translation. The system specification outlines the

functional and non-functional aspects, architectural

choices, constraints, and intended use cases to ensure

clarity in design, implementation, and deployment.

 Functional Requirements: The primary functional

requirements are centered around gesture data

management and translation services. The system must

provide users with the ability to add new gestures, view

existing gestures, update them when necessary, and

remove obsolete or incorrect entries. A translation service

converts recognized input into corresponding gesture

sequences, enabling real-time or near real-time

communication support. REST APIs ensure that these

functionalities are accessible not only through a

dedicated interface but also by third-party systems such

as mobile apps, web platforms, or assistive technologies.

 Non-Functional Requirements: The system must be

usable and intuitive, ensuring that individuals with

minimal technical knowledge can operate it effectively.

Scalability is critical, as the system should accommodate

a growing database of gestures and simultaneous API

requests. Security measures, such as input validation and

protection against unauthorized access, are essential to

safeguard sensitive user data and prevent misuse.

Maintainability is emphasized by adopting modular

design principles, ensuring that components can be

updated or extended independently without disrupting

the entire system.

 System Constraints: The implementation will rely on

Python 3.x as the primary programming language,

offering simplicity and a robust ecosystem for backend

development. Flask is chosen as the lightweight

framework to develop API-first backends, providing

flexibility in handling

HTTP requests and responses.

SQLAlchemy serves as the ObjectRelational Mapper

(ORM), ensuring safe, portable, and efficient interactions

with databases. For persistence, SQLite is selected for

lightweight deployments, while PostgreSQL or MySQL

are supported for scalable environments, allowing

deployment flexibility depending on resource

availability.

 Architecture and Design: The system follows a layered

architecture consisting of Presentation, Application, and

Data layers. The Presentation layer interacts with end

users and external systems through REST APIs, ensuring

platform independence. The Application layer contains

the business logic for managing gestures and translation

workflows. The Data layer handles persistence through a

normalized database schema designed in Third Normal

Form (3NF), ensuring data integrity and minimizing

redundancy. Additional design choices include the use of

Proxy Fix middleware for reverse proxy integration and

modular blueprints in Flask for separation of concerns.

 Use Cases: Two primary use cases drive the system

design—Gesture Management and Translation

Workflow. Gesture Management involves storing and

maintaining a robust library of gestures accessible to

different applications. Translation Workflow ensures

seamless conversion of inputs into gestures, bridging

communication between impaired and nonimpaired

individuals in real-world interactions.

Overall, the system specification emphasizes reliability,

modularity, and extensibility, laying the foundation for

future enhancements such as AI-based realtime gesture

recognition, multilingual support, and broader

accessibility applications.

2.4. SOFTWARE DESCRIPTION

The proposed software, SignSpeak, is a modular and

extensible platform designed to translate spoken input

into sign language gestures while managing a database of

gestures for flexible adaptation. The software is

structured around three primary services: gesture

management, translation services, and REST API

integration, enabling both direct user interaction and

third-party system connectivity.

Core Components

• Gesture Management Service o Provides CRUD

(Create, Read, Update, Delete) operations for

maintaining a dynamic gesture library.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05090

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

o Ensures adaptability to different sign languages and

evolving vocabulary.

• Translation Service o Converts input (speech or text)

into structured gesture sequences.

o Supports real-time and near real-time communication

for accessibility.

• API Integration Layer

o Exposes system functionality through REST APIs.

o Enables seamless integration with mobile apps, web

platforms, and assistive technologies.

Technical Stack

• Programming Language: Python

3.x.

• Framework: Flask (API-first backend design).

• Frontend: jinja2, javascript, real time speech

recognition.

• Backend: flask, SQLAlchemy.

• Database: SQLite (lightweight use), with

PostgreSQL/MySQL for scalable. Environments.

• ORM: SQLAlchemy for safe, portable data handling.

• AI Integration: openAI GPT, speech recognition,

text processing.

Key Features

• Functional: Gesture CRUD operations, translation

workflow, API accessibility.

• Non-Functional: Scalability, security (input

validation, access control), usability, and maintainability

through modular design.

• Constraints: Lightweight by default, scalable with

advanced databases; proxy integration supported via

middleware.

Use Cases

• Gesture Management: Storing and maintaining a

gesture database for future extensions.

• Translation Workflow:

Converting spoken or text input into gesture sequences

for effective communication

3.SYSTEM DESIGN

3.1. INPUT DESIGN

The input design of the

SIGNSPEAK system is structured to efficiently capture,

process, and interpret various forms of user input such as

audio and text, ensuring seamless translation into sign

language gestures. The system offers users multiple

modes of input including live speech through a

microphone, prerecorded audio file uploads, and manual

text entry. This flexibility allows individuals with

different preferences and accessibility needs to use the

system conveniently. Upon receiving the input, the

system performs preprocessing tasks like noise

reduction, silence trimming, and normalization to

enhance clarity. For audio inputs, an Automatic Speech

Recognition (ASR) module converts spoken language

into textual format with timestamp annotations, which is

then used by the translation engine. Text inputs, on the

other hand, are directly processed through Natural

Language Processing (NLP) techniques such as

tokenization, part-ofspeech tagging, and semantic

parsing to understand sentence structure and meaning.

The preprocessed text is then analyzed to detect linguistic

nuances, context, and emotional tone, ensuring accurate

mapping to corresponding sign language elements. A

sign lexicon database and grammar transformation

engine convert the processed text into a sign language

gloss format that aligns with the grammatical structure of

the selected sign language (e.g., ASL, ISL, or BSL).

Users can also specify their preferences such as playback

speed, avatar type, and sign language variant through

interactive options. Validation mechanisms ensure that

the input is accurate, complete, and supported —

checking for missing text, invalid file formats, or

unrecognized languages. This robust input design allows

SIGNSPEAK to handle diverse linguistic data effectively

into clear, meaningful sign gestures, ensuring inclusivity

and communication accuracy across different input

modes.

 3.2. OUTPUT DESIGN

The output design of the SIGNSPEAK system focuses on

delivering clear, interactive, and accessible sign language

translations through animated visual gestures and textual

instructions. After processing the input, the system

generates a sequence of gestures corresponding to each

word or phrase, displayed through a 3D or 2D animated

avatar. These gestures visually represent sign language

movements, hand shapes, and facial expressions to

effectively convey meaning. The system also produces

text-based sign instructions that describe each gesture in

detail, making it beneficial for learners and individuals

who prefer textual guidance. The output includes the sign

gloss sequence, subtitles, and translations, ensuring a

synchronized and comprehensive representation of both

language and gesture.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05090

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

Users can control the playback speed, pause or repeat

specific signs, and switch between detailed or simplified

instruction modes. The system also allows downloading

of gesture videos in MP4 or WebM formats, along with

subtitle files (SRT) and textual transcripts for offline

accessibility. Additionally, SIGNSPEAK integrates

accessibility features like highcontrast visuals, large

fonts, and screen reader support for users with visual or

cognitive impairments. A confidence scoring module

indicates the accuracy of each sign mapping, and fallback

mechanisms use fingerspelling or textual alternatives if a

specific sign is unavailable. The output interface ensures

smooth synchronization between gesture animations and

captions, providing an intuitive learning and

communication experience.

Furthermore, users can export output data in machine-

readable JSON format, which includes gloss sequences,

sign timelines, confidence levels, and diagnostic details.

This makes SIGNSPEAK’s output not only user-friendly

but also adaptable for integration with educational or

assistive platforms. In essence, the output design ensures

that every translation is clear, expressive, and accessible,

empowering both hearing and speech-impaired

individuals to communicate more effectively through

digital sign languag

 4. SYSTEM TESTING

The purpose of system testing is to validate the complete

functionality, performance, and reliability of the

proposed sign language translation system. It ensures that

all integrated modules – gesture CRUD operations,

translation services, and REST APIs – work together as

intended and meet the requirements outlined during

system analysis and design. This stage also helps identify

defects, usability issues, or performance bottlenecks

before deployment.

4.1 FUNCTIONAL TESTING

Functional testing is carried out to verify that each feature

of the system behaves according to the requirements.

This includes creating, reading, updating, and deleting

gestures in the database, accurate translation of input into

gesture sequences, and proper functioning of REST APIs.

Each function is tested with valid and invalid inputs to

ensure robustness. Blackbox testing is applied here,

focusing on inputs and outputs rather than internal code

execution.

4.2 INTEGRATION TESTING

Integration testing evaluates the seamless interaction

between system components such as the backend logic,

database (SQLite/PostgreSQL/MySQL), and API

endpoints. It checks whether gesture data stored in the

database can be correctly retrieved and processed by the

translation module, and whether the API responses

remain consistent and error-free across interconnected

services.

4.3 NON-FUNCTIONAL TESTING

Non-functional aspects are tested to guarantee system

quality beyond core functionality. Scalability testing

ensures the system handles multiple concurrent requests

without degrading performance. Usability testing checks

accessibility and user-friendliness, ensuring that even

nontechnical users can interact with gesture management

and translation workflows. Security testing focuses on

input validation, API authentication, and protection

against

SQL injection or data breaches.

Maintainability testing verifies that the codebase and

architecture (layered with modularity and 3NF schema)

support easy updates and debugging.

4.4 REGRESSION TESTING

Whenever updates or new features are introduced,

regression testing is performed to confirm that existing

modules continue to function as expected. For instance,

if a new translation rule is added, tests are conducted to

ensure CRUD operations and previous translation

functionalities remain unaffected.

4.5 SAMPLE TESTING

To ensure systematic coverage, test cases are designed

with defined inputs, execution conditions, and expected

outputs. For example:Gesture Creation Test: Input: new

gesture record with name and action. Expected Output:

Gesture stored successfully and retrievable via

API.Gesture Update Test: Input: update existing gesture

description. Expected Output: Database reflects the

updated value without errors.Translation Workflow Test:

Input: sample text phrase. Expected Output:

Correct mapped gesture sequence returned.API Load

Test: Input: 1000 simultaneous requests. Expected

Output: System responds within acceptable latency

without crashing.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05090

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

 5. SYSTEM IMPLEMENTATION AND

MAINTENANCE

5.1. SYSTEM IMPLEMENTATION

1. High Architecture

• Presentation Layer: REST APIs (Flask blueprints)

that accept audio/text and return gesture sequences or

exported animations.

• Application Layer: Business logic including ASR

adapter, text normalization, translation engine (gloss

mapping and grammar reordering), timing/prosody

alignment, and export orchestration. • Data Layer:

Relational database (SQLite for development,

PostgreSQL/MySQL for production) storing gestures,

gloss mappings, users, translations and audit logs.

• Optional Worker Layer:

Background workers (Celery + Redis/RabbitMQ) for

heavy tasks such as video exports or longrunning ASR

jobs.

• Deployment: Docker containers behind Nginx

reverse proxy; Gunicorn as WSGI server;

Kubernetes optional for large scale. 2. Database Schema

(Core Tables)

• users (id, username, email, role, created_at)

• gestures (id, gloss, language_code, handshape_data

JSON, non_manual_data JSON, video_sample_url,

created_by, created_at, updated_at)

• gloss_mappings (id, phrase_pattern, gloss_id,

priority, notes) — maps spoken phrases to gesture glosses

• translations (id, input_text, user_id, status,

result_json, created_at)

• audit_logs (id, action, entity, entity_id, user_id,

timestamp, metadata JSON)

3. REST API Design (Examples)

• POST /gestures — create gesture (auth required)

• GET /gestures — list gestures

(filters: language, search)

• GET /gestures/<id> — get gesture details

• PUT /gestures/<id> — update gesture

• DELETE /gestures/<id> — delete gesture

• POST /translate/audio — upload audio / stream;

returns translation job ID + quick preview if short

• POST /translate/text — translate text to gloss

sequence

• GET /translate/<job_id> — get status + result (gloss

sequence,

timing, render URL)

• POST

/export/<translation_id>?format=m

p4|gif — request video export (async)

Include pagination, rate limiting headers, standardized

response envelope and HTTP status codes.

4. Translation Flow (Step-by-step)

1. Input: Audio upload/stream or direct text.

2. ASR Module: (for audio) produce text + word-level

timestamps (use external ASR or on-prem model).

3. Text Normalizer: expand numbers, dates, contracts;

basic NER.

4. Mapping Engine: consult gloss_mappings to map

phrases → gloss sequences; use POS/NER heuristics.

5. Grammar Reorderer: convert spoken-language

order to signlanguage syntax (rule-based or small

seq2seq model).

6. Timing Aligner: use ASR timestamps to compute

start/duration for each gloss.

7. Render Package: produce JSON payload with gloss

IDs, keypoint frames or avatar instructions + timing;

return to client or send to export worker.

5. Avatar Rendering / Output Modes

• Client-side animation: return keypoint frames or

avatar instructions (JSON) so frontends animate with

WebGL/Three.js or SVG.

• Server-side rendering: headless rendering using

Blender/three.js to produce MP4/GIF (performed by

worker).

• Fallback modes: stylized pictograms or finger-

spelling for unknown terms. Provide playback

controls (speed, loop, subtitles).

6. Background Workers & Async Tasks Use Celery +

Redis (or RabbitMQ) to handle long-running tasks:

heavy ASR jobs, batch imports, video export. REST API

returns job IDs for async operations and provides

endpoints to poll status.

7. Security & Non-functional Considerations

• Authentication & Authorization: JWT-based

tokens, role-based permissions for CRUD.

• Input validation & sanitization for uploads.

• Rate limiting: use Flask-Limiter.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05090

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 8

• Transport security: enforce HTTPS; store secrets in

environment variables / vault.

• Logging & Monitoring: structured logs, metrics

(Prometheus), and alerting.

• Scalability: horizontal scaling of API containers,

worker autoscaling, and production-grade DB

(Postgres).

• Maintainability: modular blueprints, clear

interfaces, and tests for units/integration.

8. Testing & CI/CD

• Unit tests for mapping logic and API endpoints

(pytest).

• Integration tests for end-to-end translation flow (ASR

adapter mocked).

• Static analysis and linting (flake8, black).

• CI pipeline: run tests, build Docker image, push to

registry, deploy to staging; CD to production with

approvals.

9. Deployment Notes

• Containerize with Docker; Gunicorn as WSGI; Nginx

as reverse proxy.

• Use environment-specific configs (dev/prod).

• For production, use PostgreSQL, cloud object storage

for media, and managed Redis.

• Consider Kubernetes for highavailability and scaling.

5.2. SYSTEM MAINTENANCE

System maintenance ensures that

SignSpeak remains reliable, secure, and adaptable to

evolving user needs after deployment. Maintenance

activities are designed to address bugs, improve

performance, and support long-term scalability while

minimizing downtime.

 Corrective Maintenance

• Fixing errors or bugs reported by users in modules

such as gesture translation, API services, or database

operations.

• Addressing unexpected system crashes, incorrect

outputs, or avatar rendering issues.

Adaptive Maintenance

• Updating the system to work with new environments

such as operating system upgrades, new versions of

Python/Flask, or database migrations.

• Supporting additional sign languages,

 regional gesture variations, or new deployment

platforms (mobile, web, cloud).

Perfective Maintenance

• Enhancing performance by optimizing ASR

processing, database queries, and rendering pipelines.

• Improving the user interface for accessibility, such as

larger avatars, customizable contrast, and playback speed

options.

• Extending APIs for integration with third-party

assistive technologies or educational platforms.

Preventive Maintenance

• Regularly auditing code quality, removing deprecated

libraries, and ensuring compliance with security best

practices.

• Performing database optimization, backup, and

archival of old translation logs.

• Monitoring system health using tools such as

Prometheus/Grafana for proactive issue detection.

Documentation & Training

• Maintaining up-to-date technical documentation

 for developers, administrators, and end-users.

• Providing training materials to ensure smooth

adoption of new features or changes.

6. CONCLUSION

The proposed SignSpeak system represents a

 significant step toward bridging the

communication gap between hearing or speech-impaired

individuals and the rest of society. By translating spoken

language into sign language gestures through a modular,

database-backed, and API-driven architecture, the

system addresses limitations in existing solutions that are

often language-specific, robotic, or lack extensibility.

The design emphasizes reliability, scalability, and

accessibility, ensuring that it can be deployed in real-

world scenarios such as education, healthcare,

workplaces, and public services. Through features like

gesture management, translation

workflows, and REST API

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 10 | Oct – 2025 DOI: 10.55041/ISJEM05090

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 9

integration, the system not only serves as an assistive tool

but also provides a platform for academic research and

further technological advancements.

Non-functional requirements such as usability,

maintainability, and security ensure that the system

remains robust and adaptable over time. The layered

architecture, modular design, and database normalization

support future enhancements, including the integration of

AI-based realtime gesture recognition, multilingual

support, and natural 3D avatar animations.

 7. FUTURE ENHANCEMENT

While the current system provides a solid foundation for

gesture management and translation, there are several

promising future enhancements that could significantly

extend its functionality, usability, and overall impact.

One key improvement would be the addition of

authentication and authorization mechanisms, enabling

secure, role-based access control so that only authorized

users or administrators can modify or delete gestures.

This would enhance security and support multi-user

environments such as schools, organizations, or research

institutions. Another critical extension is the support for

multiple sign languages, as existing implementations are

often limited to a single sign language such as ASL or

ISL.

By incorporating datasets for various regional and

international sign languages, the system could serve a

much wider audience and promote inclusivity. Real-time

video recognition and gesture detection is another area of

advancement, where users could perform gestures

through a camera, and the system would recognize and

process them without requiring textual input, thereby

bridging the gap between human interaction and machine

interpretation. Additionally, developing an analytics

dashboard would provide valuable insights, such as the

most frequently used gestures, translation efficiency, and

user activity trends, which could guide improvements

and research.

Features such as dataset import/export would allow

researchers and educators to customize the system with

their own gesture sets, ensuring flexibility and

adaptability across different domains. Integration with

mobile platforms, cloudbased AI models, and IoT

devices could further extend the reach and accessibility

of the system. Collectively, these enhancements would

transform the current solution into a comprehensive,

intelligent, and scalable platform that supports realtime

communication, multi-lingual inclusivity, and advanced

research applications in sign language recognition.

8.REFERENCES

8.1 BOOK REFERENCES

• Jurafsky, D., & Martin, J. H. (2023). Speech and

Language Processing

 (3rd ed.). Pearson.

 → Covers speech recognition, natural language

processing, and machine translation.

• Tanenbaum, A. S., & Van Steen, M. (2016).

Distributed Systems:

Principles and Paradigms (2nd ed.).

Pearson.

 → Useful for understanding REST APIs, scalability, and

modular architectures.

• Silberschatz, A., Korth, H. F., & Sudarshan, S. (2020).

Database System Concepts (7th ed.). McGraw-Hill.

 → Core database design principles, CRUD operations,

and normalization.

• Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S.,

& Lazar, J. (2016). Designing the User

Interface: Strategies for Effective Human-Computer

Interaction (6th ed.). Pearson.

 → Covers usability and accessibility principles relevant

to assistive technologies.

8.2. WEB REFERENCES

• Signapse — AI Sign Language

 Translation Platform

 URL: https://signapse.ai/ Signapse • Sign-Speak API /

SDK documentation URL:

https://app.theneo.io/signspeak/sign-speak-api Theneo

• SignAll SDK & MediaPipe

integration for sign language interfaces URL:

https://developers.googleblog.com/ en/signall-sdk-sign-

languageinterface-using-mediapipe-is-nowavailable-

for-developers/ Google Developers Blog • Hand Talk —

virtual translator & plugin for ASL / sign languages

URL: https://www.handtalk.me/en

Hand Talk - Learn ASL today • SpreadTheSign —

multilingual online sign language dictionary URL:

https://www.spreadthesign.com Wikipedia

• Research — “A proposed artificial intelligence-based

real-time speech-to-text to sign language translation”

(PMC article) URL:

https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC9452925/ PMC

https://signapse.ai/?utm_source=chatgpt.com
https://signapse.ai/?utm_source=chatgpt.com
https://signapse.ai/?utm_source=chatgpt.com
https://signapse.ai/?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://www.handtalk.me/en?utm_source=chatgpt.com
https://www.handtalk.me/en?utm_source=chatgpt.com
https://www.handtalk.me/en?utm_source=chatgpt.com
https://www.handtalk.me/en?utm_source=chatgpt.com
https://www.handtalk.me/en?utm_source=chatgpt.com
https://www.handtalk.me/en?utm_source=chatgpt.com
https://www.spreadthesign.com/
https://www.spreadthesign.com/
https://en.wikipedia.org/wiki/Spreadthesign?utm_source=chatgpt.com
https://en.wikipedia.org/wiki/Spreadthesign?utm_source=chatgpt.com
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452925/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452925/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452925/
https://pmc.ncbi.nlm.nih.gov/articles/PMC9452925/?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC9452925/?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC9452925/?utm_source=chatgpt.com

