A
151EMy International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
Ly Volume: 04 Issue: 10 | Oct - 2025 DOI: 10.55041/ISJEM05090

“57-1"!?2;43, An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

Signspeak — Sign Language Translator Bot

DR.V. SHANMUGA PRIYA 1, AVANTHIKAR 2
Assistant Professorl, Student of CS2

Sri Krishna Arts and Science College, Kuniyamuthur - Coimbatore Shanmugapriyav(@skasc.ac.in 1,
avanthikar24bcs104@skasc.ac.in 2

ABSTRACT

SignSpeak is an innovative solution designed to bridge the communication gap between hearing individuals and the deaf
or hard-of-hearing community. The system translates spoken language or written text into corresponding sign language
gestures or instructional representations, enabling seamless and real-time communication. By leveraging advanced speech
recognition and natural language processing techniques, SignSpeak accurately captures and interprets audio input, while
also allowing direct text input for versatile use across different scenarios. The processed input is then mapped to a
structured sign language database, which produces either animated gestures or detailed instructional steps, ensuring clarity
and ease of understanding for the user.

The platform incorporates an intuitive user interface that supports real-time feedback and interaction, making it accessible
for both educational and practical applications. SignSpeak aims to empower individuals, institutions, and organizations to
communicate inclusively, reducing social barriers and enhancing accessibility. Additionally, the system is designed to
support multiple sign language dialects and can be extended with new gesture sets, providing scalability and adaptability
for global deployment. By integrating cutting-edge technologies in audio processing, text analysis, and animation,
SignSpeak offers an effective, reliable, and user-friendly tool for fostering inclusive communication and promoting social
awareness.

1.1 OBJECTIVE OF THE PROJECT

The objective of the Sign Language Translator Board
1.INTRODUCTION

] . .) project is to develop an innovative system that simplifies
The Sign Language Translator Board is an innovative

communication between hearing individuals and the deaf

assistive communication system designed to bridge the or hard-of-hearing community by providing a real-time

gap between hearing individuals and the deaf or hard-of- translation of text or audio into step-by-step sign

hearing community by providing an intuitive, real-time language instructions. Unlike traditional systems that

translation of spoken or written language into sign
language instructions. The proposed system accepts

rely on animated avatars or require prior knowledge of
sign language, this board is designed to guide users with

either text or audio input and then processes this input clear and easy-to-follow directions such as “point to your

through a translation engine that maps words, phrases, chin” or “wave your hand,” enabling anyone to perform

and sentences to their equivalent sign language gestures. the gestures and communicate effectively with a deaf

Instead of displaying signs as complex animated avatars

person. The main goal is to make communication
or requiring specialized training in sign language, the

inclusive and accessible in everyday scenarios such as

system is designed to guide the hearing individual step education, healthcare, workplaces, and public services

by step by giving clear, human-readable and action-

]) ' _ _ where the lack of sign language knowledge often creates
oriented instructions such as “raise your right hand,”

barriers.
“point to your chin,” or “wave your hand,” which can

then be physically performed to communicate effectively
with the deaf person.
© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

o

“1% Volume: 04 Issue: 10 | Oct - 2025

st

1.;@1\;{1 International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05090

w;ﬁw""‘*ﬁl;,, An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

1.2 PROBLEM STATEMENT

Communication is one of the most fundamental human
needs, yet millions of deaf and hard-of-hearing
individuals face significant barriers in their daily lives
due to the lack of widespread knowledge of sign
language among the general population. This
communication gap leads to challenges in education,
workplaces, healthcare, customer services, and even
casual social interactions, often resulting in
misunderstandings, dependency on interpreters, and
social isolation.

While interpreters and text-based solutions exist, they are
not always accessible, affordable, or available in
realtime.SignSpeak addresses this problem by
envisioning a real-time translation tool that uses
computer vision and Al to recognize gestures, signs, and
expressions, and converts them into speech/text, while
also enabling the reverse translation to help nonsigners
communicate effectively.

2. SYSTEM ANALYSIS

The system analysis provides a comprehensive overview
of the requirements, constraints, and use cases that form
the foundation for the proposed application. From a
functional perspective, the system must deliver full
CRUD (Create, Read, Update, Delete) capabilities for
managing gestures, ensuring that new gestures can be
added, existing ones modified, retrieved for use, or
removed when outdated. A core requirement is the
translation service, which enables the conversion of
textual or audio input into sign language gestures in real
time, thereby bridging communication gaps and
enhancing accessibility. RESTful APIs play a central role
by enabling seamless communication across system
layers, ensuring interoperability = with external
applications, and supporting integration in diverse
deployment environments. Nonfunctional requirements
emphasize usability through an intuitive interface,
scalability to accommodate growing user bases, security
to protect sensitive data and ensure safe transactions, and
maintainability to simplify updates, debugging, and
feature enhancements. The system is constrained to
Python 3.x as the development language, with Flask as
the lightweight web framework, = SQL Alchemy for
ORM support, and SQLite, PostgreSQL, or MySQL as
database options depending on deployment needs. Key
use cases include gesture management, where users or
administrators maintain gesture repositories.

2.1. EXISTING SYSTEM

1. SignAll

a. Primarily designed for sign language to text/speech
(reverse of your system).

b. Uses multiple cameras and sensors to track
hand/arm/facial movements.

c. Strength: Real-time recognition of sign language.

d. Limitation: Hardwareheavy, not designed for audio
— sign output.

2. Google’s Live Transcribe

(Accessibility Service)

a. Converts speech — realtime captions (text) on
Android devices.

b. Widely used by the
hearing community.

deaf/hard-of-

c. Limitation: Provides text only, no sign language

visualization.

3. ASL Animated Avatars / Sign

Language Avatars

a. Research systems (e.g., University of Hamburg’s

SiGML avatars, VCom3D’s SigningAvatar).

b. Convert text — sign animations using predefined sign

dictionaries and avatar rendering.

c. Limitation: Often rulebased, lack natural facial

expressions & fluidity — appear robotic. 4. Microsoft
Kinect-based

Prototypes

a. Some research prototypes map spoken words — sign

gestures using Kinect sensors + avatar output.

b. Limitation: Small vocabulary, not scalable, and

mainly experimental.

5. Mobile Apps (basic versions)

a. A few apps exist that attempt speech — animated

sign output (e.g., Hand Talk App, developed in Brazil).

b. Use cartoon avatars to show Brazilian Sign Language

(Libras).

c. Limitation: Focused on specific sign languages,

limited accuracy, often not natural-looking.

GAPS IN EXISTING SYSTEM

* Most systems focus on sign — text/speech, not the
reverse.

* Speech — sign systems exist, but they are rule-based,
robotic, or limited to specific languages (ASL,
Libras).

* Lack of context-aware translation

(e.g., grammar differences, idioms).

© 2025, ISJEM (All Rights Reserved) | www.isjem.com

| Page 2

i Volume: 04 Issue: 10 | Oct - 2025

International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05090

aﬁﬁv‘:’-;ul, An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

* Poor support for non-manual signs (facial
expressions, body posture), which are crucial for
meaning.

* Limited scalability and real-time performance for
everyday use.

2.2. PROPOSED SOLUTION

To overcome the communication barriers faced by the
deaf and hard-ofhearing community, SignSpeak
proposes an intelligent system that translates spoken
language (speech/audio) into sign language
gestures and animations in real time. Unlike existing
solutions that are either text-only or rely on limited,
robotic avatars, SignSpeak integrates speech
recognition, natural language processing, and
advanced avatar animation to deliver a more natural
and inclusive experience.

The system first captures spoken input through a
microphone or audio source, which is then processed
using a speech-totext engine. The transcribed text is
analyzed by a language processing module that
converts the spoken-language syntax into sign-language
grammar, ensuring accurate meaning representation. The
processed output is then mapped to a sign dictionary,
with unknown terms handled via finger-spelling. Finally,
a 3D avatar rendering module generates smooth,
expressive sign animations, including hand movements,
body posture,

and facial expressions, which are essential for natural
communication in sign languages.

2.3. HARDWARE & SOFTWARE SPECIFICATION

2.3 (a) HARDWARE SPECIFICATION

The HP Chromebook x360 14aca0506TU comes
equipped with an Intel Celeron N4020 dual-core
processor, offering a base clock speed of 1.1 GHz with a
burst frequency of up to 2.8 GHz, paired with a4 MB L2
cache. It features 4 GB LPDDR4-2400 MHz RAM that
is soldered onto the motherboard and is nonexpandable.
For storage, it provides 64 GB eMMC, sometimes
bundled with 100 GB Google Cloud storage for one year.
The graphics are powered by integrated Intel UHD
Graphics from the Celeron N4020.

Processor (CPU)

The laptop is powered by an Intel Celeron N4020 dual-
core processor, running at a base clock speed of 1.1 GHz
and capable of bursting up to 2.8 GHz. It comes with a 4

MB L2 cache, offering sufficient performance for
lightweight tasks, browsing, and educational use.

Memory (RAM)

It has 4 GB LPDDR4-2400 MHz RAM, which is
soldered directly onto the motherboard. The memory is
nonexpandable, meaning upgrades are not possible,
making it best suited for basic multitasking.

Storage

The Chromebook comes with 64 GB eMMC storage,
which is reliable for light data storage. Additionally,
buyers may receive 100 GB of Google Cloud storage free
for one year, making it easier to store files online.

Graphics

Graphics are handled by Integrated Intel UHD Graphics
(from the Celeron N4020). While not designed for heavy
gaming, this is adequate for HD video playback,
browsing, and standard applications.

Display

It features a 14-inch HD touchscreen with a resolution of
1366 x 768 pixels. The screen has a micro-edge
BrightView design, brightness of ~220 nits, and covers
about 45% NTSC color gamut. The 2-in-1 convertible
design allows it to be used in tablet, tent, or display
modes.

Connectivity & Networking

The Chromebook supports Wi-Fi 5 (802.11 a/b/g/n/ac)
and Bluetooth 5, powered by the Realtek RTL8822CE
chipset. It also supports MU-MIMO for better wireless
performance with multiple devices.

Ports & Input

It comes with 2 USB Type-C ports (supporting Power

Delivery and DisplayPort 1.2), and likely 2 USB Type-A

ports for standard connections.

Additionally, it has a

headphone/microphone combo jack and an island-style
chiclet keyboard for comfortable typing.

Audio

For audio, the Chromebook includes dual speakers,
offering decent sound quality for video streaming and
online classes. Battery & Power

It is powered by a 2-cell 47 Wh Li-ion battery, offering
good backup for regular use. Charging is done via USB-
C, and while some variants support fast charging (50% in

© 2025, ISJEM (All Rights Reserved) | www.isjem.com

| Page 3

o

“1% Volume: 04 Issue: 10 | Oct - 2025

st

1.;@1\;{1 International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05090

w;ﬁw""‘*ﬁl;,, An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

~45 minutes), this model may vary. Dimensions &
Weight

The device is lightweight and portable, weighing 1.49 kg
(3.28 Ibs). Its dimensions are approximately 32.6 x 22 x
1.8 cm, making it slim and easy to carry.

2.3(b) SOFTWARE
SPECIFICATION

The proposed system is designed to bridge the
communication gap between hearing or speech-impaired
individuals and others by providing a reliable,
databasebacked platform for gesture management and
translation. The system specification outlines the
functional and non-functional aspects, architectural
choices, constraints, and intended use cases to ensure
clarity in design, implementation, and deployment.

Functional Requirements: The primary functional
requirements are centered around gesture data
management and translation services. The system must
provide users with the ability to add new gestures, view
existing gestures, update them when necessary, and
remove obsolete or incorrect entries. A translation service
converts recognized input into corresponding gesture
sequences, enabling real-time or near real-time
communication support. REST APIs ensure that these
functionalities are accessible not only through a
dedicated interface but also by third-party systems such
as mobile apps, web platforms, or assistive technologies.

Non-Functional Requirements: The system must be
usable and intuitive, ensuring that individuals with
minimal technical knowledge can operate it effectively.
Scalability is critical, as the system should accommodate
a growing database of gestures and simultaneous API
requests. Security measures, such as input validation and
protection against unauthorized access, are essential to
safeguard sensitive user data and prevent misuse.
Maintainability is emphasized by adopting modular
design principles, ensuring that components can be
updated or extended independently without disrupting
the entire system.

System Constraints: The implementation will rely on
Python 3.x as the primary programming language,
offering simplicity and a robust ecosystem for backend
development. Flask is chosen as the lightweight
framework to develop API-first backends, providing
flexibility in handling

HTTP requests and responses.

SQLAIchemy serves as the ObjectRelational Mapper
(ORM), ensuring safe, portable, and efficient interactions
with databases. For persistence, SQLite is selected for
lightweight deployments, while PostgreSQL or MySQL
are supported for scalable environments, allowing
deployment flexibility —depending on resource
availability.

Architecture and Design: The system follows a layered

architecture consisting of Presentation, Application, and
Data layers. The Presentation layer interacts with end
users and external systems through REST APIs, ensuring
platform independence. The Application layer contains
the business logic for managing gestures and translation
workflows. The Data layer handles persistence through a
normalized database schema designed in Third Normal
Form (3NF), ensuring data integrity and minimizing
redundancy. Additional design choices include the use of
Proxy Fix middleware for reverse proxy integration and
modular blueprints in Flask for separation of concerns.

Use Cases: Two primary use cases drive the system
design—Gesture =~ Management and Translation
Workflow. Gesture Management involves storing and
maintaining a robust library of gestures accessible to
different applications. Translation Workflow ensures
seamless conversion of inputs into gestures, bridging
communication between impaired and nonimpaired
individuals in real-world interactions.

Overall, the system specification emphasizes reliability,
modularity, and extensibility, laying the foundation for
future enhancements such as Al-based realtime gesture
recognition, multilingual support, and broader
accessibility applications.

2.4. SOFTWARE DESCRIPTION

The proposed software, SignSpeak, is a modular and
extensible platform designed to translate spoken input
into sign language gestures while managing a database of
gestures for flexible adaptation. The software is
structured around three primary services: gesture
management, translation services, and REST API
integration, enabling both direct user interaction and
third-party system connectivity.

Core Components

* Gesture Management Service o Provides CRUD
(Create, Read, Update, Delete) operations for
maintaining a dynamic gesture library.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com

| Page 4

o

“1% Volume: 04 Issue: 10 | Oct - 2025

st

1.;@1\;{1 International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05090

w;ﬁw""‘*ﬁl;,, An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

o Ensures adaptability to different sign languages and
evolving vocabulary.

* Translation Service o Converts input (speech or text)
into structured gesture sequences.

o Supports real-time and near real-time communication
for accessibility.

¢ API Integration Layer

o Exposes system functionality through REST APIs.

o Enables seamless integration with mobile apps, web
platforms, and assistive technologies.

Technical Stack

* Programming Language: Python

3.x.

* Framework: Flask (API-first backend design).

* Frontend: jinja2, javascript, real time speech
recognition.

* Backend: flask, SQLAlchemy.

* Database: SQLite (lightweight use), with
PostgreSQL/MySQL for scalable. Environments.

* ORM: SQLAIchemy for safe, portable data handling.

* Al Integration: openAl GPT, speech recognition,
text processing.

Key Features

* Functional: Gesture CRUD operations, translation
workflow, API accessibility.
Scalability,
validation, access control), usability, and maintainability
through modular design.

* Non-Functional: security (input

* Constraints: Lightweight by default, scalable with
advanced databases; proxy integration supported via
middleware.

Use Cases

* Gesture Management: Storing and maintaining a
gesture database for future extensions.

* Translation Workflow:
Converting spoken or text input into gesture sequences
for effective communication

3.SYSTEM DESIGN

3.1. INPUT DESIGN

The input design of the

SIGNSPEAK system is structured to efficiently capture,
process, and interpret various forms of user input such as
audio and text, ensuring seamless translation into sign
language gestures. The system offers users multiple

modes of input including live speech through a
microphone, prerecorded audio file uploads, and manual
text entry. This flexibility allows individuals with
different preferences and accessibility needs to use the
system conveniently. Upon receiving the input, the
system performs preprocessing tasks like noise
reduction, silence trimming, and normalization to
enhance clarity. For audio inputs, an Automatic Speech
Recognition (ASR) module converts spoken language
into textual format with timestamp annotations, which is
then used by the translation engine. Text inputs, on the
other hand, are directly processed through Natural
Language Processing (NLP) techniques such as
tokenization, part-ofspeech tagging, and semantic
parsing to understand sentence structure and meaning.

The preprocessed text is then analyzed to detect linguistic
nuances, context, and emotional tone, ensuring accurate
mapping to corresponding sign language elements. A
sign lexicon database and grammar transformation
engine convert the processed text into a sign language
gloss format that aligns with the grammatical structure of
the selected sign language (e.g., ASL, ISL, or BSL).
Users can also specify their preferences such as playback
speed, avatar type, and sign language variant through
interactive options. Validation mechanisms ensure that
the input is accurate, complete, and supported —
checking for missing text, invalid file formats, or
unrecognized languages. This robust input design allows
SIGNSPEAK to handle diverse linguistic data effectively
into clear, meaningful sign gestures, ensuring inclusivity
and communication accuracy across different input
modes.

3.2. OUTPUT DESIGN

The output design of the SIGNSPEAK system focuses on
delivering clear, interactive, and accessible sign language
translations through animated visual gestures and textual
instructions. After processing the input, the system
generates a sequence of gestures corresponding to each
word or phrase, displayed through a 3D or 2D animated
avatar. These gestures visually represent sign language
movements, hand shapes, and facial expressions to
effectively convey meaning. The system also produces
text-based sign instructions that describe each gesture in
detail, making it beneficial for learners and individuals
who prefer textual guidance. The output includes the sign
gloss sequence, subtitles, and translations, ensuring a
synchronized and comprehensive representation of both
language and gesture.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com

| Page 5

N

o4l Volume: 04 Issue: 10 | Oct - 2025

o

3t r«*x\'\f« International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05090

»5"""“““& An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

Users can control the playback speed, pause or repeat
specific signs, and switch between detailed or simplified
instruction modes. The system also allows downloading
of gesture videos in MP4 or WebM formats, along with
subtitle files (SRT) and textual transcripts for offline
accessibility. Additionally, SIGNSPEAK integrates
accessibility features like highcontrast visuals, large
fonts, and screen reader support for users with visual or
cognitive impairments. A confidence scoring module
indicates the accuracy of each sign mapping, and fallback
mechanisms use fingerspelling or textual alternatives if a
specific sign is unavailable. The output interface ensures
smooth synchronization between gesture animations and
captions, providing an intuitive learning and
communication experience.

Furthermore, users can export output data in machine-
readable JSON format, which includes gloss sequences,
sign timelines, confidence levels, and diagnostic details.
This makes SIGNSPEAK’s output not only user-friendly
but also adaptable for integration with educational or
assistive platforms. In essence, the output design ensures
that every translation is clear, expressive, and accessible,
empowering both hearing and speech-impaired
individuals to communicate more effectively through
digital sign languag

4. SYSTEM TESTING

The purpose of system testing is to validate the complete
functionality, performance, and reliability of the
proposed sign language translation system. It ensures that
all integrated modules — gesture CRUD operations,
translation services, and REST APIs — work together as
intended and meet the requirements outlined during
system analysis and design. This stage also helps identify
defects, usability issues, or performance bottlenecks
before deployment.

4.1 FUNCTIONAL TESTING

Functional testing is carried out to verify that each feature
of the system behaves according to the requirements.
This includes creating, reading, updating, and deleting
gestures in the database, accurate translation of input into
gesture sequences, and proper functioning of REST APIs.
Each function is tested with valid and invalid inputs to
ensure robustness. Blackbox testing is applied here,
focusing on inputs and outputs rather than internal code
execution.

4.2 INTEGRATION TESTING

Integration testing evaluates the seamless interaction
between system components such as the backend logic,
database (SQLite/PostgreSQL/MySQL), and API
endpoints. It checks whether gesture data stored in the
database can be correctly retrieved and processed by the
translation module, and whether the API responses
remain consistent and error-free across interconnected
services.

4.3 NON-FUNCTIONAL TESTING

Non-functional aspects are tested to guarantee system
quality beyond core functionality. Scalability testing
ensures the system handles multiple concurrent requests
without degrading performance. Usability testing checks
accessibility and user-friendliness, ensuring that even
nontechnical users can interact with gesture management
and translation workflows. Security testing focuses on
input validation, API authentication, and protection
against

SQL injection or data breaches.
Maintainability testing verifies that the codebase and
architecture (layered with modularity and 3NF schema)
support easy updates and debugging.

4.4 REGRESSION TESTING

Whenever updates or new features are introduced,
regression testing is performed to confirm that existing
modules continue to function as expected. For instance,
if a new translation rule is added, tests are conducted to
ensure CRUD operations and previous translation
functionalities remain unaffected.

4.5 SAMPLE TESTING

To ensure systematic coverage, test cases are designed
with defined inputs, execution conditions, and expected
outputs. For example:Gesture Creation Test: Input: new
gesture record with name and action. Expected Output:
Gesture stored successfully and retrievable via
API.Gesture Update Test: Input: update existing gesture
description. Expected Output: Database reflects the
updated value without errors.Translation Workflow Test:
Input: sample text phrase. Expected Output:

Correct mapped gesture sequence returned.API Load
Test: Input: 1000 simultaneous requests. Expected
Output: System responds within acceptable latency
without crashing.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com

| Page 6

'y
{\ ¥ Volume: 04 Issue: 10 | Oct - 2025

=

International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05090

a&-’v‘:’-%l, An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

5. SYSTEM IMPLEMENTATION AND
MAINTENANCE

5.1. SYSTEM IMPLEMENTATION

1. High Architecture

* Presentation Layer: REST APIs (Flask blueprints)
that accept audio/text and return gesture sequences or
exported animations.

* Application Layer: Business logic including ASR
adapter, text normalization, translation engine (gloss
mapping and grammar reordering), timing/prosody
alignment, and export orchestration. * Data Layer:
Relational database (SQLite for development,
PostgreSQL/MySQL for production) storing gestures,
gloss mappings, users, translations and audit logs.

* Optional Worker Layer:

Background workers (Celery + Redis/RabbitMQ) for
heavy tasks such as video exports or longrunning ASR
jobs.

* Deployment: Docker containers behind Nginx
reverse proxy; Gunicorn as WSGI server;

Kubernetes optional for large scale. 2. Database Schema
(Core Tables)

* users (id, username, email, role, created at)

* gestures (id, gloss, language code, handshape data
JSON, non manual data JSON, video sample url,
created by, created at, updated_at)

* gloss mappings (id, phrase pattern, gloss id,
priority, notes) — maps spoken phrases to gesture glosses
* translations (id, input text, user id, status,
result json, created at)

* audit logs (id, action, entity, entity id, user id,
timestamp, metadata JSON)

3. REST API Design (Examples)

* POST /gestures — create gesture (auth required)

* GET /gestures — list gestures

(filters: language, search)

* GET /gestures/<id> — get gesture details

* PUT /gestures/<id> — update gesture

* DELETE /gestures/<id> — delete gesture

* POST /translate/audio — upload audio / stream;
returns translation job ID + quick preview if short

* POST /translate/text — translate text to gloss
sequence

* GET /translate/<job_id> — get status + result (gloss
sequence,

timing, render URL)

* POST
/export/<translation_id>?format=m
p4|gif — request video export (async)

Include pagination, rate limiting headers, standardized
response envelope and HTTP status codes.

4. Translation Flow (Step-by-step)

1. Input: Audio upload/stream or direct text.

2. ASR Module: (for audio) produce text + word-level
timestamps (use external ASR or on-prem model).

3. Text Normalizer: expand numbers, dates, contracts;
basic NER.

4. Mapping Engine: consult gloss mappings to map
phrases — gloss sequences; use POS/NER heuristics.

5. Grammar Reorderer: convert spoken-language
order to signlanguage syntax (rule-based or small
seq2seq model).

6. Timing Aligner: use ASR timestamps to compute
start/duration for each gloss.

7. Render Package: produce JSON payload with gloss
IDs, keypoint frames or avatar instructions + timing;
return to client or send to export worker.

5. Avatar Rendering / Output Modes

* Client-side animation: return keypoint frames or
avatar instructions (JSON) so frontends animate with
WebGL/Three.js or SVG.

* Server-side rendering: headless rendering using
Blender/three.js to produce MP4/GIF (performed by
worker).

* Fallback modes: stylized pictograms or finger-
spelling for unknown terms. Provide playback
controls (speed, loop, subtitles).

6. Background Workers & Async Tasks Use Celery +
Redis (or RabbitMQ) to handle long-running tasks:
heavy ASR jobs, batch imports, video export. REST API
returns job IDs for async operations and provides
endpoints to poll status.

7. Security & Non-functional Considerations

* Authentication & Authorization: JWT-based
tokens, role-based permissions for CRUD.

* Input validation & sanitization for uploads.

* Rate limiting: use Flask-Limiter.

© 2025, ISJEM (All Rights Reserved) | www.isjem.com

| Page 7

N

T

e
=
W

&<

j oW Volume: 04 Issue: 10 | Oct - 2025

s

X

o £

=

“

:_kr.aj\'\‘f‘ International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05090

f~"“4_ An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

* Transport security: enforce HTTPS; store secrets in
environment variables / vault.

* Logging & Monitoring: structured logs, metrics
(Prometheus), and alerting.

* Scalability: horizontal scaling of API containers,
worker autoscaling, and production-grade DB
(Postgres).

* Maintainability: = modular
interfaces, and tests for units/integration.

blueprints, clear

8. Testing & CI/CD

* Unit tests for mapping logic and API endpoints
(pytest).

* Integration tests for end-to-end translation flow (ASR
adapter mocked).

» Static analysis and linting (flake8, black).

* (I pipeline: run tests, build Docker image, push to
registry, deploy to staging; CD to production with
approvals.

9. Deployment Notes

* Containerize with Docker; Gunicorn as WSGI; Nginx
as reverse proxy.

* Use environment-specific configs (dev/prod).

* For production, use PostgreSQL, cloud object storage
for media, and managed Redis.

* Consider Kubernetes for highavailability and scaling.

5.2. SYSTEM MAINTENANCE

System maintenance ensures that
SignSpeak remains reliable, secure, and adaptable to
evolving user needs after deployment. Maintenance
activities are designed to address bugs, improve
performance, and support long-term scalability while
minimizing downtime.

Corrective Maintenance

* Fixing errors or bugs reported by users in modules
such as gesture translation, API services, or database

operations.

* Addressing unexpected system crashes, incorrect
outputs, or avatar rendering issues.

Adaptive Maintenance

* Updating the system to work with new environments
such as operating system upgrades, new versions of
Python/Flask, or database migrations.

* Supporting additional sign languages,
regional gesture variations, or new deployment
platforms (mobile, web, cloud).

Perfective Maintenance

* Enhancing performance by optimizing ASR
processing, database queries, and rendering pipelines.

* Improving the user interface for accessibility, such as
larger avatars, customizable contrast, and playback speed
options.

* Extending APIs for integration with third-party
assistive technologies or educational platforms.

Preventive Maintenance

* Regularly auditing code quality, removing deprecated
libraries, and ensuring compliance with security best
practices.

* Performing database optimization, backup, and
archival of old translation logs.

* Monitoring system health using tools such as
Prometheus/Grafana for proactive issue detection.

Documentation & Training

* Maintaining up-to-date technical documentation
for developers, administrators, and end-users.

* Providing training materials to ensure smooth

adoption of new features or changes.

6. CONCLUSION

The proposed SignSpeak system represents a
significant step toward bridging the
communication gap between hearing or speech-impaired
individuals and the rest of society. By translating spoken
language into sign language gestures through a modular,
database-backed, and API-driven architecture, the
system addresses limitations in existing solutions that are
often language-specific, robotic, or lack extensibility.

The design emphasizes reliability, scalability, and
accessibility, ensuring that it can be deployed in real-
world scenarios such as education, healthcare,
workplaces, and public services. Through features like
gesture management, translation

workflows, and REST API

© 2025, ISJEM (All Rights Reserved) | www.isjem.com

| Page 8

Volume: 04 Issue: 10 | Oct - 2025

International Scientific Journal of Engineering and Management (ISJEM)

ISSN: 2583-6129
DOI: 10.55041/ISJEM05090

An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

integration, the system not only serves as an assistive tool
but also provides a platform for academic research and
further technological advancements.

Non-functional requirements such as usability,
maintainability, and security ensure that the system
remains robust and adaptable over time. The layered
architecture, modular design, and database normalization
support future enhancements, including the integration of
Al-based realtime gesture recognition, multilingual
support, and natural 3D avatar animations.

7. FUTURE ENHANCEMENT

While the current system provides a solid foundation for
gesture management and translation, there are several
promising future enhancements that could significantly
extend its functionality, usability, and overall impact.
One key improvement would be the addition of
authentication and authorization mechanisms, enabling
secure, role-based access control so that only authorized
users or administrators can modify or delete gestures.
This would enhance security and support multi-user
environments such as schools, organizations, or research
institutions. Another critical extension is the support for
multiple sign languages, as existing implementations are
often limited to a single sign language such as ASL or
ISL.

By incorporating datasets for various regional and
international sign languages, the system could serve a
much wider audience and promote inclusivity. Real-time
video recognition and gesture detection is another area of
advancement, where users could perform gestures
through a camera, and the system would recognize and
process them without requiring textual input, thereby
bridging the gap between human interaction and machine
interpretation. Additionally, developing an analytics
dashboard would provide valuable insights, such as the
most frequently used gestures, translation efficiency, and
user activity trends, which could guide improvements
and research.

Features such as dataset import/export would allow
researchers and educators to customize the system with
their own gesture sets, ensuring flexibility and
adaptability across different domains. Integration with
mobile platforms, cloudbased Al models, and IoT
devices could further extend the reach and accessibility
of the system. Collectively, these enhancements would
transform the current solution into a comprehensive,
intelligent, and scalable platform that supports realtime

communication, multi-lingual inclusivity, and advanced
research applications in sign language recognition.

8.REFERENCES
8.1 BOOK REFERENCES

* Jurafsky, D., & Martin, J. H. (2023). Speech and
Language Processing
(3rd ed.).

— Covers speech recognition, natural language
processing, and machine translation.

* Tanenbaum, A. S., & Van Steen, M. (2016).
Distributed Systems:

Pearson.

Principles and Paradigms (2nd ed.).

Pearson.

— Useful for understanding REST APIs, scalability, and
modular architectures.

* Silberschatz, A., Korth, H. F., & Sudarshan, S. (2020).
Database System Concepts (7th ed.). McGraw-Hill.

— Core database design principles, CRUD operations,
and normalization.

* Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S.,
& Lazar, J. (2016). Designing the User

Interface: Strategies for Effective Human-Computer
Interaction (6th ed.). Pearson.

— Covers usability and accessibility principles relevant
to assistive technologies.

8.2. WEB REFERENCES

* Signapse — Al Sign Language

Translation Platform
URL: https://signapse.ai/ Signapse ¢ Sign-Speak API /
SDK documentation URL:

https.://app.theneo.io/signspeak/sign-speak-api Theneo
* SignAll SDK & MediaPipe
integration for sign language interfaces URL:

https://developers.googleblog.com/ en/signall-sdk-sign-

languageinterface-using-mediapipe-is-nowavailable-

for-developers/ Google Developers Blog * Hand Talk —

virtual translator & plugin for ASL / sign languages
URL: https://'www.handtalk.me/en

Hand Talk - Learn ASL today e SpreadTheSign —
multilingual online sign language dictionary URL:

https://'www.spreadthesign.com Wikipedia

* Research — “A proposed artificial intelligence-based
real-time speech-to-text to sign language translation”
(PMC article) URL:
https://'www.ncbi.nlm.nih.gov/pmc/
articles/PMC9452925/ PMC

© 2025, ISJEM (All Rights Reserved) | www.isjem.com

| Page 9

https://signapse.ai/?utm_source=chatgpt.com
https://signapse.ai/?utm_source=chatgpt.com
https://signapse.ai/?utm_source=chatgpt.com
https://signapse.ai/?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://app.theneo.io/sign-speak/sign-speak-api?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://developers.googleblog.com/en/signall-sdk-sign-language-interface-using-mediapipe-is-now-available-for-developers/?utm_source=chatgpt.com
https://www.handtalk.me/en?utm_source=chatgpt.com
https://www.handtalk.me/en?utm_source=chatgpt.com
https://www.handtalk.me/en?utm_source=chatgpt.com
https://www.handtalk.me/en?utm_source=chatgpt.com
https://www.handtalk.me/en?utm_source=chatgpt.com
https://www.handtalk.me/en?utm_source=chatgpt.com
https://www.spreadthesign.com/
https://www.spreadthesign.com/
https://en.wikipedia.org/wiki/Spreadthesign?utm_source=chatgpt.com
https://en.wikipedia.org/wiki/Spreadthesign?utm_source=chatgpt.com
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452925/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452925/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9452925/
https://pmc.ncbi.nlm.nih.gov/articles/PMC9452925/?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC9452925/?utm_source=chatgpt.com
https://pmc.ncbi.nlm.nih.gov/articles/PMC9452925/?utm_source=chatgpt.com

