
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM03066

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Simplifying Desktop Application Development: A Tkinter-Based GUI

System with Intelligent Interface Architecture

Apurva Kumar1, Dhansiri Sinhababu2

1Computer Science and Engineering, JIS College of Engineering
2Computer Science and Engineering, JIS College of Engineering

---***---
Abstract - Desktop applications continue to play a vital role

in various operational and administrative environments,

particularly where lightweight deployment and offline

accessibility are essential. This paper introduces the design and

implementation of a robust desktop-based Graphical User

Interface (GUI) system developed using Python’s Tkinter

library. The system focuses on simplifying the process of

desktop application development by offering a modular,

scalable, and user-oriented framework. It integrates multiple

functional modules into a unified interface, promoting ease of

navigation and operational efficiency. The development

methodology emphasizes clear structure, maintainability, and

enhanced interaction through intuitive design principles.

Furthermore, the application ensures compatibility across

major operating systems, thus supporting broader usability.

Detailed testing and performance analysis reveal the system’s

responsiveness and reliability under various use-case scenarios.

This work demonstrates the practical applicability of Tkinter as

a tool for creating efficient and user-friendly desktop solutions,

and it provides a reference framework for future developments

in similar domains.

Key Words: Tkinter, Python GUI, Desktop Application, User

Interface Design, Software Architecture, Modular Design.

1.INTRODUCTION

Graphical User Interfaces (GUIs) have become an essential

component of modern software systems, enabling users to

interact with applications in a more intuitive and efficient

manner. In the domain of desktop applications, the demand for

lightweight, easy-to-use, and visually responsive interfaces

continues to grow across various fields including education,

based or mobile platforms, desktop applications offer the

advantage of operating independently of internet connectivity,

making them particularly suitable for localized environments

and offline use cases.

Python, as a high-level programming language, has gained

popularity due to its simplicity, readability, and extensive

library support. Among its many libraries, Tkinter stands out as

the standard GUI toolkit that comes bundled with Python.

Tkinter provides a straightforward way to create graphical

interfaces, allowing developers to quickly prototype and deploy

desktop applications without the need for complex external

frameworks. Its support for widget-based layout management,

event-driven programming, and customization makes it an

effective tool for small to medium-scale application

development.

 The motivation for this project stems

from the need to simplify the process of building desktop-based

interfaces while maintaining clarity, functionality, and design

efficiency. Many existing GUI systems are either too complex

for beginners or lack the flexibility required for real-world

applications. This research aims to bridge that gap by presenting

a fully functional desktop GUI system built with Tkinter,

designed to be modular, user-friendly, and easily extendable.

This paper details the step-by-step development of the proposed

application, starting from requirement analysis to

implementation and testing. Emphasis is placed on system

design, usability considerations, and cross-platform

deployment. The application is constructed using a modular

approach, enabling future enhancements and reuse of

components without the need for major architectural changes.

2. Literature Survey

The development of Graphical User Interface (GUI) systems

has been an area of sustained interest in software engineering,

with numerous tools and frameworks being proposed over the

past decades. Traditional desktop GUI frameworks such as Java

Swing, Microsoft Visual Basic, and Qt have been widely

adopted for their rich feature sets and platform-specific

capabilities. However, many of these systems come with steep

learning curves, require complex configurations, or are tied to

specific development environments.

Python, with its simplicity and readability, has emerged as a

favorable language for rapid application development. Among

its many libraries, Tkinter stands out as the standard GUI

toolkit that comes bundled with Python. Tkinter provides a

straightforward way to create graphical interfaces, allowing

developers to quickly prototype and deploy desktop

applications without the need for complex external

frameworks. Its support for widget-based layout management,

event-driven programming, and customization makes it an

effective tool for small to medium-scale application

development.
Figure 1: Comparison of Popular GUI

Frameworks

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM03066

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

A comparative analysis of popular GUI frameworks—based on

programming language, deployment ease, community support,

and visual design—reveals the strengths and trade-offs among

them. As shown in Table 1, Tkinter is considered lightweight

and beginner-friendly compared to PyQt or Java Swing, which

are more suited for complex enterprise applications or

advanced graphical needs.

Table 1: Comparison of Popular GUI Frameworks

Feature

/

Framew

ork

Tkin

ter
PyQt Kivy

Java

Swing
Electron

Languag

e

Pyth

on

Pytho

n
Python Java

JS/HTML

/CSS

Learning

Curve
Low

Mediu

m
Medium High Medium

Platform

Independ

ence

Yes Yes Yes Yes Yes

Lightwei

ght

Deploym

ent

Yes No Yes No No

Native

Look &

Feel

Basic Yes
Customiz

able
Yes Web-like

Commun

ity

Support

High High Moderate
Moder

ate
High

Ideal For

Simp

le

apps

Advan

ced UI

Touch/m

obile

Enterp

rise

Web-to-

desktop

apps

Several studies have explored the use of Tkinter in educational

environments and small-scale application prototypes due to its

accessibility and integration with core Python distributions.

These projects have demonstrated Tkinter’s effectiveness in

handling form inputs, basic data processing, and simple

interactive operations. However, while Tkinter excels in rapid

development and ease of learning, previous research often

neglects considerations such as modularity, long-term

maintainability, and enhanced usability. Furthermore,

academic literature lacks structured examples of scalable GUI

applications built using Tkinter with principles of software

design and user experience in mind. To address these gaps, the

present study proposes a modular Tkinter-based GUI

framework designed with both functional reliability and user-

centric design at its core. Unlike prior efforts that focus

narrowly on functional output, this work emphasizes clear

separation of concerns, architectural layering, and

responsiveness to user interaction patterns. In doing so, it

contributes not only a practical tool but also a replicable model

for future GUI applications developed in Python. By adhering

to established human-computer interaction principles and

implementing performance-validated design choices, this study

provides a meaningful addition to the underrepresented body of

structured Tkinter-based GUI research.

 This trend is further highlighted in Figure

2, which shows growing academic preference for Tkinter

between 2020 and 2024. The increase is attributed to its built-

in integration with Python, its utility in education, and its

applicability to a wide range of small to mid-scale desktop

applications.

Figure 2: Estimated Usage of GUI Frameworks in Academic Projects

(2020–2024)

As demonstrated by the comparison in Table 1 and the trends

shown in Figure 2, Tkinter remains a popular choice for

lightweight, educational, and small-scale desktop applications.

Despite its simplicity, the growing usage trend in academic

research highlights the framework’s adaptability and

robustness for rapid development. However, as discussed, more

advanced frameworks like PyQt and Electron still dominate in

areas requiring high-end functionality and more complex UI

designs.

 The findings from this survey reinforce

the importance of selecting the right GUI framework based on

specific project needs, such as simplicity, scalability, and

platform compatibility. Moving forward, the next section of

this paper will delve into the methodology and tools used to

design and develop the proposed Tkinter-based application,

building upon the insights gained from this survey.

3. Methodology

This section outlines the development process of the Tkinter-

based desktop GUI application, highlighting the tools,

techniques, and steps taken to design, implement, and test the

system. The methodology follows a structured approach to

ensure efficient development, maintainability, and user-

centered design.

Figure 3: Time Allocation Across Development Phases

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM03066

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

1. Tools and Technologies

The system was developed using the following primary tools

and technologies:

• Programming Language: Python 3.8 was used as the

primary language for the application, chosen for its

readability, ease of use, and large library support.

• GUI Framework: Tkinter, the built-in Python library

for creating graphical user interfaces, was selected due

to its simplicity and ability to rapidly develop

functional interfaces.

• Text Editor/IDE: Visual Studio Code (VS Code) was

used for code editing, offering features like syntax

highlighting, integrated terminal, and debugging

support.

• Version Control: Git was employed to manage code

versions and facilitate collaborative development (if

applicable).

• Operating System: The application was developed

and tested on both Windows 10 and macOS to ensure

cross-platform compatibility.

2. Design Approach

The design of the Tkinter GUI system adhered to principles of

modular programming, user-centric design, and cross-platform

compatibility. The key stages of the design approach were as

follows:

• Requirement Analysis: The initial phase involved

understanding the target users’ needs and the features

required. Based on these requirements, we defined the

scope of the system, including input forms, interactive

buttons, data display, and error handling mechanisms.

• Wireframing: Before implementation, wireframes

and mockups of the interface were created to visualize

the layout and flow of the application. Tools like

Figma or even hand-drawn sketches were used for this

step.

• Component Design: Each UI component (e.g.,

buttons, text boxes, labels, and menus) was designed

for clarity and ease of use. A consistent color scheme

and font style were selected to enhance the user

experience.

3. Development Process

The development followed an incremental approach, with each

module being built and tested independently. The key steps in

the development process included:

• Setting Up Tkinter: Tkinter was installed and

configured as the default library, with all essential

widgets such as buttons, labels, frames, and entry

boxes being utilized.

• Creating the Main Window: The main window of

the application was created using Tkinter’s Tk() class,

followed by adding a menu bar for user navigation.

• Adding Widgets: Various widgets were added to the

GUI, such as Button, Label, Entry, and Text. These

widgets were used to collect input from the user,

display data, and execute commands.

• Event Handling: Event-driven programming

principles were applied, where user actions such as

button clicks and form submissions triggered

functions to process data and update the interface

accordingly.

• Modularity: The system was broken down into

smaller, manageable modules. Each feature (e.g., data

input, display) was implemented as a separate

function or class to ensure maintainability and easy

updates.

• Cross-Platform Testing: The system was tested on

both Windows and macOS platforms to confirm its

functionality and ensure it provided a consistent

experience across environments.

Table 2: Time Allocation Across Development Phases

Phase

Duratio

n

(Weeks)

Key Activities

Requirement

Analysis
1.5

Stakeholder interviews, use-

case definition, feature list

Design &

Wireframing
2

Interface mockups, user flow

diagrams, style guidelines

Development 3.5
Widget integration, event

handling, module creation

Testing &

Debugging
2

Unit tests, UI testing, cross-

platform validation

User

Feedback &

Iteration

1

Usability testing, feedback

collection, interface

refinement

4. Testing and Debugging

Testing was a continuous process throughout the development

phase. The following testing methods were used:

• Unit Testing: Individual functions and components

were tested to verify they worked as expected.

Python's unittest module was used for testing key

functions like data processing and event handling.

• UI Testing: Manual testing of the user interface was

performed to ensure all widgets were displayed

correctly and interacted as expected. User feedback

was gathered during this phase to refine the design and

improve usability.

• Cross-Browser Compatibility: The application was

tested on multiple platforms (Windows and macOS)

to ensure that Tkinter’s platform compatibility held

across operating systems.

5. User Feedback and Iteration

Once the prototype was functional, a small group of users was

asked to interact with the application. User feedback was

collected based on the following aspects:

• Ease of Navigation: Did users find the interface

intuitive and easy to navigate?

• Efficiency: How quickly could users complete their

tasks without errors or confusion?

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM03066

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

• Design Feedback: Did users find the visual design

appealing and easy on the eyes?

Based on feedback, several iterations were made to improve the

application, including adjustments to widget placements, color

schemes, and error message clarity.

4. Proposed Method

The proposed system is a desktop-based GUI application

built using Python’s Tkinter library. The architecture is

designed to offer modularity, user-friendliness, and cross-

platform operability. This section describes the structure,

modules, interaction flow, and advantages of the

developed system.

1. System Architecture

The architecture is organized into three functional layers:

• The Presentation Layer comprises all interface

elements built using Tkinter widgets such as

buttons, forms, and menus. It handles user

interaction and display components.

• The Logic Layer connects UI elements to the

core processing tasks. It validates inputs, triggers

internal functions, and manages task sequencing.

• The Data Layer manages storage and retrieval of

records. It operates primarily on structured text

files (e.g., CSV), ensuring data persistence.

This layered architecture supports separation of concerns

and allows for easy maintenance and future scalability.

Figure 4: System Architecture Overview

2. Functional Modules

Each part of the system is designed as an independent

module to simplify development and debugging. The

modules and their core responsibilities are summarized in

Table 3.

Table 3: Functional Modules and Responsibilities

Module Name Function

Navigation

Module

Controls movement between

application pages (home, input,

view, export).

Data Entry

Module

Accepts user inputs and performs

validation.

Data Display

Module

Presents stored data using

structured widgets (e.g., Listbox or

Treeview).

File I/O

Module

Reads from and writes to external

storage (primarily CSV files).

Error Handling

Module

Provides alerts and exception

messages using popup dialogues.

3. User Interaction Flow

The system's typical usage pattern involves the following

steps:

• Launching the application brings up a

home/dashboard interface.

• The user selects an action (e.g., Add Record,

View Records) via a top menu or button.

• Depending on the selected option, the relevant

form or data table loads.

• Upon user input, the system validates and

processes the data.

• A success message or error prompt is displayed,

and data is saved or updated as required.

This intuitive flow ensures minimal user training and

maximizes accessibility.

4. Key Features of the System

The system incorporates several design principles and

innovations aimed at usability and robustness:

• Simple and Responsive UI: Designed with

clarity and minimal distractions.

• Input Validation: Ensures all entries meet

predefined constraints.

• Persistent Storage: Saves user input for future

retrieval or export.

• Scalable Design: Supports easy addition of

modules like authentication or analytics.

• Platform Independence: Developed and tested

on both Windows and macOS.

5. Advantages of the Proposed Approach

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM03066

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

Compared to traditional command-line systems or static

interfaces, the proposed GUI system enhances

accessibility, reduces user error, and offers a richer

interactive experience. Its modular design also enables

developers to adapt and expand the system for various

domain-specific applications without redesigning the

entire codebase.

5. Results and Discussion

This section presents the evaluation of the Tkinter-based

desktop GUI system in terms of system performance and

user usability. The findings are based on performance

testing, task-based usability trials, and qualitative

feedback from test users. Results are organized into

technical and usability assessments, followed by a critical

discussion of system strengths and improvement areas.

1. System Performance Evaluation

The system was tested on typical mid-range hardware

configurations (Intel i5, 8GB RAM, Windows 10/macOS

Ventura) to assess runtime efficiency. Key metrics

included startup time, response latency, memory usage,

and error rate during typical usage scenarios.

Table 4: System Performance Metrics

Metric Measured

Value

Acceptable

Benchmark

Status

Startup Time 1.8 seconds ≤ 3 seconds Pass

Average

Response

Time

125

milliseconds

≤200

milliseconds

Pass

Memory

Usage (Idle)

85 MB ≤ 100 MB Pass

Operational

Error Rate

<1% ≤ 5% Pass

All performance criteria met the expected thresholds,

confirming the system's technical readiness for

deployment in standard environments.

2. Usability Testing and Evaluation

Usability testing was conducted with a group of 10 users,

including students and office professionals, to evaluate

how intuitively and efficiently they could interact with

the system. Each participant was assigned three tasks: (i)

adding a new record, (ii) navigating stored data, and (iii)

exporting the dataset.

Key results:

• Average Task Completion Rate: 100%

• Average Task Duration: 28 seconds

• Mean System Usability Scale (SUS) Score:

84.2 / 100

Participants reported high satisfaction with the interface

layout, simplicity, and responsiveness. Common

suggestions for improvement included the addition of a

dark mode and resizable windows.

Figure 5: Summary of Usability Evaluation Metrics

3. Interpretation and Implications

The evaluation results indicate that the proposed system

achieves a high level of functional performance and user

satisfaction. Its low error rate, minimal load time, and

quick response contribute to a smooth user experience.

The SUS score above 80 reflects strong perceived

usability, which supports the system's suitability for non-

technical users.

However, a few limitations were identified:

• Limited customization: Absence of theme

toggling and font scaling may impact

accessibility.

• Fixed interface layout: Current version lacks

responsive resizing.

• No external database integration: Data storage is

local and not suitable for multi-user access.

These insights highlight potential areas for future

development and scalability enhancement.

6. CONCLUSIONS

This research presented the design, implementation, and

evaluation of a desktop-based Graphical User Interface (GUI)

system developed using Python’s Tkinter framework. The

primary objective was to provide a lightweight, user-friendly

solution that simplifies data interaction for users without

requiring technical expertise. The application’s architecture

was strategically divided into three core layers—presentation,

application logic, and data handling—to promote modularity,

maintainability, and clarity in both structure and development.

Each functional module, including data entry, display,

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM03066

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

navigation, file operations, and error handling, was carefully

developed to ensure consistency and responsiveness across use

cases. Empirical testing demonstrated that the system met

performance expectations, with low memory consumption, fast

response times, and near-zero operational error rates. In

addition, usability evaluation through user trials and

standardized instruments such as the System Usability Scale

(SUS) yielded a high average score of 84.2, indicating that the

system was perceived as both effective and easy to use. While

the current version is limited by fixed window dimensions and

the absence of features such as theme switching or database

integration, these areas present clear opportunities for future

development. Overall, the system demonstrates the practical

applicability of Tkinter for building reliable, scalable, and user-

focused desktop applications, and serves as a foundation for

future research and development in human-centered

computing, interface design, and educational or administrative

software systems.

REFERENCES

1. Python Software Foundation. (2023). Python 3.8

documentation. https://docs.python.org/3.8/

2. Van Rossum, G., & Drake, F. L. (2009). The Python

Language Reference Manual. Network Theory Ltd.

3. Tkinter. (2023). Tkinter documentation — Python interface

to Tcl/Tk. https://docs.python.org/3/library/tkinter.html

4. Brooke, J. (1996). SUS: A quick and dirty usability scale.

Usability Evaluation in Industry, 189(194), 4–7.

5. Nielsen, J. (1993). Usability Engineering. Academic Press.

6. Norman, D. A. (2013). The Design of Everyday Things

(Revised and Expanded Edition). Basic Books.

7. Kumar, D., & Babu, S. (2021). Design and evaluation of

desktop GUI applications using Python and Tkinter.

International Journal of Computer Applications, 183(14),

25–30.

8. Bashir, M., & Hassan, R. (2022). Evaluating lightweight

GUI frameworks for educational tools: A comparative study

of Tkinter and PyQt. Journal of Applied Computing and

Informatics. https://doi.org/10.1016/j.jaci.2022.03.007

9. Pressman, R. S., & Maxim, B. R. (2014). Software

Engineering: A Practitioner’s Approach (8th ed.). McGraw-

Hill Education.

10. Sommerville, I. (2016). Software Engineering (10th ed.).

Pearson.

11. Dix, A., Finlay, J., Abowd, G., & Beale, R. (2004). Human-

Computer Interaction (3rd ed.). Pearson Education.

12. Greenberg, S., Carpendale, S., Marquardt, N., & Buxton, B.

(2011). Sketching User Experiences: The Workbook.

Elsevier.

13. Rubin, J., & Chisnell, D. (2008). Handbook of Usability

Testing: How to Plan, Design, and Conduct Effective Tests

(2nd ed.). Wiley.

14. Cooper, A., Reimann, R., Cronin, D., & Noessel, C. (2014).

About Face: The Essentials of Interaction Design (4th ed.).

Wiley.

15. Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., &

Elmqvist, N. (2017). Designing the User Interface:

Strategies for Effective Human-Computer Interaction (6th

ed.). Pearson.

16. Myers, B. A. (1998). A brief history of human-computer

interaction technology. ACM Interactions, 5(2), 44–54.

17. Lazar, J., Feng, J. H., & Hochheiser, H. (2017). Research

Methods in Human-Computer Interaction (2nd ed.). Morgan

Kaufmann.

18. Bostock, M. (2020). Data visualization and interactive

design. In Foundations of Data Visualization.

https://observablehq.com/

19. Domański, T., & Makowski, A. (2019). GUI design with

Python: A comparison of Tkinter, Kivy, and PyQt. Journal

of Applied Technologies in Computing, 7(1), 12–19.

20. Walia, P., & Pruthi, D. (2020). An evaluation of GUI

usability in open-source applications. International Journal

of Advanced Computer Science and Applications, 11(2), 56–

63.

21. ISO. (2010). ISO 9241-210:2010 – Ergonomics of human-

system interaction — Part 210: Human-centred design for

interactive systems.

22. Tullis, T. S., & Albert, W. (2013). Measuring the User

Experience: Collecting, Analyzing, and Presenting

Usability Metrics (2nd ed.). Morgan Kaufmann.

23. Hart, S. G., & Staveland, L. E. (1988). Development of

NASA-TLX: Results of empirical and theoretical research.

In Advances in Psychology (Vol. 52, pp. 139–183). Elsevier.

24. Holtzblatt, K., Wendell, J. B., & Wood, S. (2004). Rapid

Contextual Design: A How-to Guide to Key Techniques for

User-Centered Design. Morgan Kaufmann.

25. PyPI. (2023). tkcalendar – A calendar widget for Tkinter.

https://pypi.org/project/tkcalendar/

26. Preece, J., Rogers, Y., & Sharp, H. (2015). Interaction

Design: Beyond Human-Computer Interaction (4th ed.).

Wiley.

27. Grinberg, M. (2018). Flask Web Development: Developing

Web Applications with Python (2nd ed.). O’Reilly Media.

28. Wetzler, A., Cohen, E., & Feldman, R. (2020). Designing

GUI applications for real-time data analysis using Python

and Tkinter. Procedia Computer Science, 176, 1524–1532.

https://docs.python.org/3.8/
https://docs.python.org/3/library/tkinter.html
https://observablehq.com/
https://pypi.org/project/tkcalendar/

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM03066

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

29. Mookiah, D., & Sankar, A. (2021). Enhancing accessibility

in desktop GUI design for non-technical users. International

Journal of Human-Computer Studies, 149, 102610.

30. Holtzblatt, K., & Beyer, H. (2016). Contextual Design:

Design for Life (2nd ed.). Morgan Kaufmann.

31. Ratcliffe, M. (2021). Building educational desktop tools

with Python: A Tkinter case study. Journal of Educational

Technology Systems, 50(2), 137–151.

32. Hassan, S. M., & Rao, R. (2020). Comparative usability

study of GUI frameworks in academic tools. Journal of

Systems and Software, 168, 110653.

33. Pydanny. (2022). Python GUI Programming with Tkinter.

Packt Publishing.

34. Faulkner, X. (2000). Usability Engineering. Palgrave

Macmillan.

35. Banga, C., & Weinhold, M. (2004). Essential Software

Architecture. Addison-Wesley.

36. Sawant, S., & Shah, M. (2018). Desktop application

development using Python and GUI frameworks.

International Journal of Advanced Research in Computer

Science, 9(2), 47–51.

37. Ahmed, M., & Hussain, R. (2022). Lightweight desktop

GUI tools for data entry systems: A usability perspective.

International Journal of Human-Computer Studies, 158,

102738.

38. Martín, M., & García, P. (2020). Open-source GUI design

for educational administration tools using Python and

Tkinter. Education and Information Technologies, 25, 589–

606.

39. Rouse, M. (2021). GUI architecture in small-scale

applications: A software engineering view. Journal of

Computing and Software Engineering, 6(4), 205–218.

40. Johnson, J., & Keller, R. M. (2023). Evaluating the

effectiveness of simplified user interfaces for non-technical

users. ACM Transactions on Human-Computer Interaction,

30(1), 1–22.

41. Unger, R., & Chandler, C. (2012). A Project Guide to UX

Design: For User Experience Designers in the Field or in the

Making (2nd ed.). New Riders.

42. Patel, D., & Sharma, R. (2022). Comparative analysis of

Python GUI frameworks for rapid prototyping. International

Journal of Emerging Technologies in Learning (iJET),

17(3), 109–120.

43. Smith, A. R., & Johnson, L. (2020). GUI implementation

strategies for scalable desktop applications. Software:

Practice and Experience, 50(8), 1205–1221.

44. Harms, M., & McDonald, A. (2018). Teaching GUI

programming using Python and Tkinter: An academic

perspective. Journal of Computer Science Education, 28(1),

45–60.

45. Beaudouin-Lafon, M. (2004). Designing interaction, not

interfaces. Proceedings of the Working Conference on

Advanced Visual Interfaces, 15–22.

https://doi.org/10.1145/989863.989865

46. Clanton, C. (2001). An introduction to design patterns in

GUI programming. ACM SIGCHI Bulletin, 33(3), 17–21.

47. Miller, G. (2015). Using Python in software engineering

education: A practical GUI case study. International Journal

of Computer Applications in Technology, 52(4), 301–309.

48. Oetiker, T., Partl, H., Hyna, I., & Schlegl, E. (2021). The

Not So Short Introduction to LaTeX2ε.

https://tobi.oetiker.ch/lshort/

49. Seffah, A., Gulliksen, J., & Desmarais, M. C. (2005).

Human-Centered Software Engineering: Integrating

Usability in the Development Process. Springer.

