
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Smart Chatbot Application Using Google Gemini and Python Flask

M.SATISH , ANDAVARAPU SAISREE

Assistant professor, 2 MCA Final Semester, Master of Computer Applications,

Sanketika Vidya Parishad Engineering College, Vishakhapatnam,

Andhra Pradesh, India.

ABSTRACT

This project is a web-based chatbot application that integrates Google's Gemini generative AI model using the Gemini

API. The chatbot provides intelligent, context-aware responses to user queries in real time. Developed using Python with

the Flask framework, the application features a clean and responsive user interface built with HTML, CSS , and JavaScript

(jQuery).

The core functionality allows users to send messages through a chat interface, which are then processed by the Flask

backend. The backend communicates with the Gemini API to generate AI-driven responses based on user input. These

responses are then returned and displayed in the frontend dynamically using AJAX, enabling smooth, real-time interaction

without page reloads.

The system is designed with modularity and simplicity in mind, making it suitable for educational, support, or personal

assistant applications. This project demonstrates how advanced language models can be effectively integrated into

lightweight web applications to create engaging and intelligent user experiences.

1.INTRODUCTION

This project involves the development of an AI-powered chatbot that uses Natural Language Processing (NLP) to

facilitate human-like conversations between users and the system. The chatbot is designed to understand, interpret,

and respond to user inputs intelligently, making interactions smooth and efficient. It can assist users by answering

queries, guiding them through processes, and providing domain-specific support such as in customer service,

healthcare, or education. The system integrates a knowledge base and machine learning models to improve response

accuracy and adaptability over time. With 24/7 availability and real-time communication capabilities, this chatbot

aims to reduce human workload, enhance user satisfaction, and deliver consistent support across various platforms.

Here are the main steps involved in the project:

1. Requirement Analysis:

Define the purpose, target users, and domain (e.g., customer service, healthcare) of the chatbot.

2. Designing the System Architecture:

Plan the overall structure including user interface, NLP engine, backend database, and integration points.

3. Data Collection & Pre-processing:

Gather sample conversations, clean the data, and prepare it for NLP model training and intent classification.

4. NLP Model Development:

Implement NLP techniques like tokenization, intent detection, entity recognition, and dialogue flow control.

5. Chatbot Development & Integration:

Build the chatbot engine, integrate it with the UI, database, and any third-party APIs (e.g., payment, scheduling).

6. Database Design:

Create and manage databases for storing user information, queries, responses, appointments, etc.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

7. Training & Testing:

Train the chatbot using machine learning models and test it across various scenarios for accuracy and consistency.

8. Deployment:

Deploy the chatbot on a web or mobile platform for user access.

9. Maintenance & Improvement:

Monitor chatbot performance, gather user feedback, and update models and data regularly for improvement.

1.1. EXISTING SYSTEMS

In the current system, most user interactions are handled manually through human support staff, emails, or static web

pages. These systems are often time-consuming, lack personalization, and are not available 24/7. Traditional rule-

based chatbots, if used, rely on predefined responses and limited keyword matching, which results in poor handling

of natural language queries and complex user intents. They struggle to maintain conversational context and cannot

adapt or learn from new inputs, making them less effective in delivering a smooth and intelligent user experience.

There is a clear need for a more advanced solution that can understand natural language, provide instant responses,

and improve over time.

1..2 PROPOSED SYSTEM

The proposed system is an AI-powered chatbot that utilizes Natural Language Processing (NLP) to understand and

respond to user queries in a natural, human-like manner. It is designed to handle a variety of tasks such as answering

questions, booking appointments, and providing relevant information. The chatbot leverages machine learning to

continuously improve its performance based on user interactions. A built-in knowledge base ensures accurate and

context-aware responses. The system operates 24/7, offering round-the-clock assistance without human intervention.

It stores user and doctor information securely in a database for personalized services. This enhances the overall user

experience by making communication faster and more efficient. The system is suitable for domains like healthcare,

education, and customer support.

 Core NLP Capabilities:

1. Intent Recognition

Uses transformer-based models (e.g., BERT, GPT) to accurately detect user intents, even in complex conversational

flows

2. Named Entity Recognition (NER)

Identifies key entities like names, dates, products, or currencies to drive transactions and richer context understanding

3. Sentiment & Emotion Analysis

Gauges user sentiment—positive, negative, or neutral—to adapt responses empathetically or escalate when needed.

4. Contextual & Multi-Turn Understanding

Maintains conversation state across multiple turns using transformers and dialogue management, enabling meaningful

and coherent interactions

5. Hybrid Modelling Approaches

Combines rule-based, retrieval, and generative models to balance reliability with natural responses

 NLP System & Dialogue Management

• Dialogue Managers

Leverage reinforcement learning or planning algorithms to guide conversations flexibly and goal-fully.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

• Natural Language Generation (NLG)

Utilizes template systems or neural models to craft fluent, brand-aligned, and dynamic responses.

Advanced & Emerging Features

1. Multimodal Interaction

Supports not just text but voice, images, or gesture inputs—perfect for comprehensive AI assistants.

2. Personalized & Proactive Assistance

Combines conversational history, user preferences, and predictive analytics to offer tailored and anticipatory help

3. Emotionally Intelligent Chatbots

Empathetic systems that recognize complex emotions, including sarcasm, to deliver human-like responses.

4. Domain Expertise & Specialized Models

Use case-specific training (e.g., healthcare, finance, tourism) for domain-tailored question answering and workflows.

5. Voice & Platform Interoperability

Standards like Open-Floor enable seamless multi-agent conversational ecosystems across platforms.

6. Ethics, Fairness & Bias Management

Built-in mechanisms to detect and mitigate bias and ensure fairness, transparency, and compliance.

1.2.1 ADVANTAGES

2. Intelligent Responses with Context Awareness

Uses Gemini’s generative AI capabilities to provide smart, human-like, and context-aware replies, enhancing the user

experience.

3. Real-Time Interaction

AJAX-based communication allows seamless message exchange without refreshing the page, resulting in a faster and

smoother user experience.

4. Lightweight & Web-Based

Accessible via any modern browser with no need for additional installations or downloads—fully cross-platform.

5. Modular & Scalable Design

Built using Flask and structured with modular code, making it easy to extend, maintain, and scale for larger or more

complex applications.

6. Responsive & Modern UI

Built with CSS and jQuery for a clean, responsive, and user-friendly interface that works across devices.

7. Easy Integration with APIs

Demonstrates how large language models like Gemini can be effectively integrated into simple web apps—useful for

learning or prototyping.

8. Versatile Application Use

Suitable for various domains like education, customer service, health support, virtual assistants, and more.

9. Fast Prototyping & Deployment

Lightweight technology stack enables quick development, testing, and deployment—ideal for MVPs or proof-of-

concepts.

2.1 ARCHITECTURE

• [User (Browser)]

•

• [Frontend (HTML + CSS + jQuery)]

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

• AJAX

• [Flask Backend (Python)]

• API Request

• [Google Gemini API (AI Model)]

• AI Response

• [Flask Backend]

•

• [Frontend (Update Chat Interface)] Data Input: Video files and images categorized into Fire, Smoke, and No Fire

Components Breakdown:

1. Frontend:

o Built with HTML, CSS, and jQuery

o Handles chat input/output

o Sends/receives messages using AJAX

2. Backend (Flask):

o Receives user messages from the frontend

o Sends prompt to Gemini API

o Receives AI response and sends it back to the frontend

3. Gemini API:

o Processes user input using generative AI

o Returns context-aware, intelligent responses

4. Communication:

o AJAX (Frontend ⇄ Backend)

o HTTP Requests (Backend ⇄ Gemini API)

• User Interface: Streamlit app for file upload and real-time results

2.2 ALGORITHM

Step 1: User Input

• User types a message in the chat interface (frontend).

• On clicking "Send", JavaScript (jQuery) captures the input.

Step 2: AJAX Request

• JavaScript sends the user message to the Flask backend using AJAX (POST request).

Step 3: Backend Processing

• Flask receives the message in the /chat route.

• It prepares a request payload for the Gemini API with the user’s message as input.

Step 4: Gemini API Call

• Flask sends an HTTP POST request to the Gemini API with the prompt (user message).

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

• Gemini API processes the input and generates a response.

Step 5: Response Handling

• Flask receives the response from Gemini API (AI reply).

• Flask returns the AI-generated message back to the frontend as JSON.

Step 6: Update UI

• JavaScript receives the response from the backend.

• The chatbot UI is updated with the AI's response in the chat window.

2.3 TECHNIQUES

1. AJAX Communication

o Enables real-time message exchange between frontend and backend without reloading the page.

2. RESTful API Integration

o Uses HTTP requests (POST) to send and receive data from the Google Gemini API.

3. Prompt Engineering

o Structures user input to effectively communicate with the generative AI for accurate responses.

4. Asynchronous Processing

o Handles requests and responses efficiently to ensure non-blocking, smooth interactions.

5. Context Management (Optional/Advanced)

o Maintains previous conversation history to provide context-aware answers (if implemented).

6. Responsive Design

o Uses CSS to ensure the UI adapts well to all screen sizes and devices.

7. Modular Backend Structure

o Flask app is designed with separate routes, logic, and API handlers to improve readability and

scalability.

8. Client-Side Rendering

o Chat messages are dynamically rendered using JavaScript/jQuery, improving user experience.

2.4 TOOLS

1. Backend Tools

• Python – Programming language for backend logic.

• Flask – Lightweight web framework to build RESTful routes and handle API requests.

• Requests Library – For sending HTTP requests to the Gemini API.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

2. Frontend Tools

• HTML – Structure of the chatbot UI.

• CSS – Utility-first CSS framework for responsive and modern styling.

• JavaScript (jQuery) – Handles events and AJAX requests for dynamic message exchange.

3. AI/External Tools

• Google Gemini API – Generative AI service used to generate intelligent, context-aware responses.

2.5 METHODS

➢ Frontend Methods (JavaScript/jQuery):

1. $('#sendBtn').click()

o Handles the Send button click event to trigger message sending.

2. $.ajax()

o Sends the user message to the Flask backend asynchronously (POST request).

3. DOM Manipulation (append())

o Updates the chat window with user and AI messages dynamically.

➢ Backend Methods (Python - Flask):

1. @app.route('/chat', methods=['POST'])

o Flask route that receives user messages and handles the chat logic.

2. request.json.get('message')

o Extracts the user message from the AJAX request payload.

3. requests.post()

o Sends the prompt to the Gemini API and receives the AI-generated response.

4. jsonify()

o Sends the AI response back to the frontend in JSON format.

➢ Gemini API (AI Method):

1. Generate Content / Chat Completion Endpoint

o Accepts the user prompt and returns a response using the Gemini language model (method depends on

the Gemini API structure, e.g., generateContent()).

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

III. METHODOLOGY

The development of this chatbot followed a modular and iterative approach, focusing on simplicity, responsiveness,

and intelligent interaction using AI.

 1. Requirement Analysis

• Identified the need for a real-time chatbot that gives intelligent, AI-driven replies.

• Chose Google Gemini API for its advanced language capabilities.

• Selected lightweight tools: Flask (Python) for the backend and CSS + jQuery for the frontend.

2. System Design

• Designed a client-server architecture:

o Frontend (chat UI)

o Flask backend (logic + Gemini API integration)

o Gemini API (AI responses)

• Planned for:

o Real-time communication using AJAX

o Clean and responsive user interface

o Scalable and modular codebase

3. Implementation Phases

➤ Frontend Development

• Built UI with HTML + CSS

• Used jQuery for capturing user input and sending AJAX requests

➤ Backend Development

• Created Flask routes to handle incoming chat messages

• Integrated Google Gemini API using the requests library

• Returned responses as JSON to frontend

➤ AI Integration

• Sent user messages as prompts to the Gemini API

• Received and processed AI-generated responses

• Managed context (if implemented)

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 8

 4. Testing & Validation

• Tested frontend/backend integration

• Verified Gemini API responses for relevance and accuracy

• Ensured cross-browser and responsive design compatibility

 5. Deployment (if applicable)

• Deployed the app on platforms like Render, Heroku, or Railway

• Ensured proper API key security and environment variable setup

3.2 METHOD OF PROCESS

1. User Message Input

o The user types a message into the chatbot interface (frontend).

o On clicking Send, JavaScript/jQuery captures the message.

2. Send to Backend (AJAX Request)

o The message is sent to the Flask backend using an AJAX POST request.

o This enables real-time communication without reloading the page.

3. Flask Backend Handling

o The Flask route receives the message.

o It formats the message as a prompt and prepares a request for the Gemini API.

4. Gemini API Interaction

o The Flask backend sends the request to Google Gemini API.

o Gemini processes the prompt and generates a smart, context-aware response.

5. Receive AI Response

o The Flask server receives the AI-generated response from Gemini.

o It extracts the relevant content and sends it back to the frontend as JSON.

6. Display Response in Chat

o JavaScript receives the AI response.

o It dynamically updates the chat window to display the AI's reply.

7. Loop Back

o The process repeats with each new user message, enabling an ongoing chat experience.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 9

3.3 OUTPUT

The output of this web-based AI chatbot application is a real-time, interactive chat interface that displays both user queries

and AI-generated responses. When a user enters a message and submits it, the system processes the input using the Gemini

API and returns a relevant, intelligent response.

The final output is presented on the screen in a clean and conversational format, with the following characteristics:

• User messages and AI responses are shown as styled chat bubbles.

• Communication occurs in real-time without page reloads, providing a smooth experience.

• Responses are context-aware and generated dynamically based on the user's input.

• The chat log updates dynamically using AJAX and jQuery, mimicking a human-like conversation.

Sample Output:

User:

What is artificial intelligence?

AI (Gemini):

Artificial intelligence (AI) is a branch of computer science focused on building smart machines that can perform tasks

typically requiring human intelligence, such as reasoning, learning, and decision-making.

User:

Give an example of AI in daily life.

AI (Gemini):

A common example is a virtual assistant like Google Assistant or Siri, which can answer questions, set reminders, and

control smart home devices using voice commands.

App.py

from flask import Flask, render_template, request, jsonify

import google.generativeai as genai

import os

from flask import Flask, send_from_directory

GOOGLE_API_KEY="AIzaSyD52nJXrOCJDROXRnNuIKRB0IpXDra60-4"

genai.configure(api_key=GOOGLE_API_KEY)

model=genai.GenerativeModel('gemini-1.5-flash')

chat=model.start_chat(history=[])

app=Flask(__name__)

@app.route('/favicon.ico')

def favicon():

 return send_from_directory("static", "favicon.ico", mimetype="image/vnd.microsoft.icon")

@app.route('/')

def index():

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 10

 return render_template('index.html')

@app.route('/chat',methods=['POST'])

def chat_response():

 user_input=request.json.get('message')

 if not user_input:

 return jsonify({"error":"No message provided"}),400

 try:

 response_raw=chat.send_message(user_input)

 print(response_raw)

 response=response_raw.text

 return jsonify({"response":response})

 except Exception as e:

 print(f"Error:{e}")

 return jsonify({"error": str(e)}), 500

if __name__=='__main__':

 app.run(debug=True

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 11

 OUTPUT SCREENS

Figure 4.2. : Output screen for AI-chatbot UI

Figure 4.2.2: Response after input

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 12

IV. RESULTS

The AI chatbot web application was successfully developed and tested. It integrates Google's Gemini API with a

responsive frontend and lightweight Flask backend to deliver intelligent, real-time interactions. The results achieved

demonstrate the effectiveness of combining modern web technologies with generative AI.

Key Results:

1. Real-Time Communication

o Achieved smooth, asynchronous message exchange using AJAX without reloading the page.

2. Accurate AI Responses

o Gemini API provided contextually relevant, human-like answers to a wide variety of user queries.

3. Responsive UI

o The interface, built with CSS, adapts well across different screen sizes (desktop and mobile).

4. Successful API Integration

o Gemini API was successfully integrated with the backend, returning low-latency responses (~1-2

seconds).

5. Modular & Scalable Architecture

o The application was structured to allow easy feature expansion (e.g., authentication, context memory).

vsV. DISCUSSIONS

The development of this AI chatbot demonstrated how modern generative AI models like Google's Gemini can be

effectively integrated into lightweight web applications. The project achieved its goal of delivering a user-friendly,

intelligent chatbot capable of understanding and responding to a wide range of queries.

 Key Observations:

1. AI Quality & Responsiveness

o The Gemini API provided highly relevant, context-aware responses.

o Response time was generally fast, making real-time chat feasible and smooth.

2. User Experience

o The use of AJAX and jQuery allowed for seamless interactions without reloading the page.

o CSS ensured a clean, mobile-responsive user interface, enhancing accessibility.

3. Integration Simplicity

o Despite the power of the Gemini model, integrating it into a Flask app was relatively straightforward.

o The modular structure of Flask routes and handlers simplified debugging and future expansion.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 13

4. Limitations

o The current chatbot handles single-turn conversations well, but multi-turn context retention is limited

unless explicitly implemented.

o Dependence on an external API means the chatbot requires a stable internet connection and valid API

credentials.

5. Potential Improvements

o Implementing user session history for better contextual understanding.

o Adding user authentication and saving chat logs.

o Supporting multimedia responses or voice input/output.

VI. CONCLUSION

This project successfully implemented a sophisticated AI-driven chatbot capable of handling natural language interactions

through carefully designed backend and frontend integrations. By structuring the system around User → Session →

Message entities, it captures full conversation history and context. The Intent–Pattern–Template model enables robust

intent recognition and flexible response selection, while the optional Problem–Symptom–Solution knowledge base

empowers the chatbot with domain-specific diagnostic capabilities.

Building on standardized black-box and white-box testing strategies, we evaluated the chatbot from both user-facing

and structural perspectives. Functional and non-functional tests ensured that user interactions remained consistent,

accurate, and performant. Meanwhile, code-level inspections—including unit and integration tests—validated internal

logic branches, API flows, and edge-case handling.

In summary, the project demonstrates that a well-architected NLP chatbot—grounded in a clear ER schema and validated

through comprehensive testing—can deliver reliable, context-aware conversational experiences. Future work could focus

on adding production features like streaming replies, continuous profiling, advanced knowledge enrichment, or

deployment in cloud-native environments, making the system even more scalable and effective.

VII. FUTURE SCOPE

This AI chatbot project demonstrates the effective integration of generative AI in a web-based environment, but there is

significant scope for future enhancement. In upcoming versions, the chatbot can be improved to support multi-turn

conversations by maintaining session context, allowing it to understand and respond more naturally in longer dialogues.

User authentication can be added to provide personalized responses and store user preferences or chat history. Further,

integrating a domain-specific knowledge base can improve response accuracy for specialized fields like education,

healthcare, or customer support. Features like voice input/output, multilingual support, and a chat history export

option will enhance accessibility and usability. Additionally, creating a mobile app version can increase reach and

convenience. With these improvements, the chatbot can evolve into a more intelligent, versatile, and user-centric virtual

assistant.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 07 | July – 2025 DOI: 10.55041/ISJEM04811

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 14

VIII. ACKNOWLEDGEMENTS

M.Satish is an enthusiastic and committed faculty member in the Department of Computer

Science. As an early-career academician, he has shown strong dedication to student

development through active involvement in project guidance and technical mentoring.

Despite being at the beginning of his professional journey, he has effectively guided

students in executing academic projects with precision and conceptual clarity. His passion

for teaching, coupled with a solid understanding of core computer science principles,

positions him as a promising educator and mentor. He continues to contribute meaningfully

to the academic environment through his proactive approach to learning and student

engagement.

Andavarapu Saisree is pursuing her final semester MCA in Sanketika Vidya Parishad

Engineering College, accredited with A grade by NAAC, affiliated by Andhra University

and approved by AICTE. With interest in AI A.Saisree has taken up her PG project on

SMART CHATBOT APPLICATION USING GOOGLE GEMINI AND PYTHON

FLASK and published the paper in connection to the project under the guidance of M.

Satish, Assistant Professor, SVPEC.

REFERENCES

1. https://github.com/gomezabajo/MuTChatbots- Testing for task Oriented Chatbots

2. https://www.geeksforgeeks.org/python/python-programming-language-tutorial/ -python programming

3. https://www.mysql.com/products/workbench/ : SQL Workbench

4. https://www.w3schools.com/HTML/default.asp W3 Schools HTML Tutorial

5. https://www.w3schools.com/js/default.asp W3 Schools JS Tutorial

https://github.com/gomezabajo/MuTChatbots-
https://www.geeksforgeeks.org/python/python-programming-language-tutorial/
https://www.mysql.com/products/workbench/
https://www.w3schools.com/HTML/default.asp
https://www.w3schools.com/js/default.asp

