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Abstract 

Software defect prediction is an essential part of 

software quality assurance that seeks to identify 

potential issues before they become costly ones. 

This paper presents a prediction method that uses 

an intelligent ensemble-based machine learning 

model to determine if software modules are broken 

or not. The model uses static code metrics such as 

Lines of Code, Cyclomatic Complexity, Coupling, 

and Inheritance Depth to produce predictions. 

Users can manually enter measurements or 

upload datasets using the system's flexible and 

user-friendly interface, which is integrated within 

a Flask-based web application. To help developers 

and testers prioritize their efforts, clear predictions 

and helpful comments are provided. The ensemble 

model increases reliability while enhancing 

accuracy and robustness by combining the 

benefits of many classifiers. This application 

demonstrates the usefulness of AI in software 

engineering and serves as a foundation for future 

developments in automated defect analysis. 
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I. Introduction 

The process of developing software is intricate and 

ever-changing, encompassing several phases of 

design, coding, testing, and maintenance. The 

probability of introducing flaws rises with the size 

and complexity of  

 

software systems. If unnoticed, these flaws have the 

potential to seriously impair software applications' 

overall performance, security, and dependability. 

Thus, one of the main goals for both developers and 

quality assurance teams is to find and fix flaws as 

early in the software development lifecycle as 

feasible. Defects have traditionally been found 

primarily through code reviews and software 

testing. Nevertheless, these techniques are 

frequently labor-intensive, time-consuming, and 

prone to human error. Data-driven strategies like 

machine learning have become viable substitutes 

for automating error identification and increasing 

accuracy in recent years. Among them, software 

defect prediction models have drawn interest due to 

their capacity to assess metrics at the code level and 

forecast the probability of faults prior to 

deployment. 

The process of training predictive models that can 

recognize faulty code components using previous 

software data and metrics is known as software 

defect prediction. The basic tenet is that software 

components with comparable complexity metrics or 

code patterns are probably more prone to defects. 

These models can reasonably identify flaws in new 

or developing software systems by utilizing 

machine learning algorithms that have been trained 

on historical data. 

In this project, we provide an intelligent ensemble-

based software defect prediction model that 

combines the advantages of several machine 

learning methods to improve prediction accuracy 

and robustness. A potent method called ensemble 

learning combines the predictions of multiple base 
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learners to generate a single, more dependable 

result. Ensemble models frequently perform better 

than standalone models in classification tasks by 

addressing the shortcomings of individual 

classifiers, particularly in complicated and 

unbalanced datasets. 

Lines of Code (LOC), Cyclomatic Complexity, 

Number of Parameters, Fan In, Fan Out, Coupling 

between Objects (CBO), Depth of Inheritance 

(DOI), Number of Methods, and Response for Class 

(RFC) are among the well-known static code 

metrics that the suggested model is based on. These 

metrics function as markers of maintainability and 

code complexity, both of which are frequently 

linked to defect proneness. A software component 

that has been labelled as either defective or non-

defective is represented by each instance of the 

ensemble model, which is trained on historical 

labelled data. The Flask framework is used to create 

a web-based application that makes the model 

usable and accessible for practical applications. 

Two methods of data entry are supported by the 

application's user-friendly interface: manually 

inputting values via a form or uploading a CSV file 

with code metrics. After the input is submitted, the 

system analyze it, applies the learned model, and 

shows the prediction result, which indicates 

whether the software component is likely to be 

flawed. Additionally, the program gracefully 

manages error situations and gives users insightful 

feedback. 

The goal of this project is to close the gap between 

real-world software engineering and predictive 

modelling. Even though numerous studies show 

high-accuracy models for defect prediction, very 

few offer interactive tools that developers and 

testers may use right away in their daily work. This 

project seeks to make intelligent defect prediction 

impactful and accessible by fusing a sophisticated 

ensemble-based predictive engine with an intuitive 

web interface. 

To increase prediction accuracy and resilience, we 

provide an intelligent ensemble-based software 

defect prediction model in this project that 

incorporates the benefits of multiple machine 

learning techniques. The predictions of several base 

learners are combined in a powerful technique 

known as ensemble learning to produce a single, 

more reliable outcome. By overcoming the 

drawbacks of individual classifiers, ensemble 

models typically outperform standalone models in 

classification tasks, especially in complex and 

unbalanced datasets. 

The proposed model is based on popular static code 

metrics, including Lines of Code (LOC), 

Cyclomatic Complexity, Number of Parameters, 

Fan In, Fan Out, Coupling Between Objects (CBO), 

Depth of Inheritance (DOI), Number of Methods, 

and Response For Class (RFC). These metrics serve 

as indicators of code complexity and 

maintainability, two factors that are commonly 

connected to defect proneness. Each instance of the 

ensemble model is trained on historical labelled 

data and represents a software component that has 

been labeled as either non-faulty or defective.  

A. Practical Implementation 

To make the model useable and accessible for real-

world applications, a web-based application is 

developed using the Flask framework. The 

application's user-friendly interface supports two 

data entry methods: uploading a CSV file 

containing code metrics or manually entering values 

via a form. Following submission of the input, the 

system analyzes it, applies the learnt model, and 

displays the prediction result, indicating the 

likelihood of a software component's flaws. The 

application also provides users with useful feedback 

and handles error circumstances graciously. This 

initiative aims to bridge the gap between predictive 

modelling and real-world software engineering. 

Few research provides interactive tools that 

developers and testers may immediately utilize in 

their daily work, even though several studies 

provide high-accuracy models for defect prediction. 

By combining an advanced ensemble-based 

predictive engine with an easy-to-use online 

interface, this project aims to make intelligent 

defect prediction both impactful and accessible. 

B. Project Significance and Contributions 

This study significantly advances the subject of 

software fault prediction in several ways: 

Enhanced prediction accuracy: Our model 

performs better than conventional single-classifier 

methods by utilizing ensemble learning techniques. 

Feature importance analysis: Our methodology 

includes a detailed examination of which code 

metrics contribute most significantly to defect 

prediction, providing insights for preventive coding 

practices. 
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Practical deployment: In software development 

settings, creating a web-based application helps 

close the gap between theoretical models and real-

world implementation. 

Comprehensive evaluation: We demonstrate our 

ensemble-based model's dependability by thorough 

cross-validation and comparison with current 

methodologies. 

Integration framework: We offer a guide for 

incorporating defect prediction into current 

software development processes, especially those in 

CI/CD and DevOps pipelines.  

In conclusion, our study contributes to the field of 

software engineering by providing a dependable 

and scalable technique for early fault diagnosis. It 

utilizes ensemble machine learning to improve 

predictive performance and integrates seamlessly 

into development workflows through a simple 

online interface. The system's output can be used by 

software teams to prioritize code review efforts, 

better allocate testing resources, and create software 

of a higher standard. 

 

II. Literature Survey 

It has long been acknowledged that software defect 

prediction (SDP), which finds fault-prone 

components early in the development lifecycle, is a 

crucial tool for enhancing software quality. 

Statistical models like logistic regression and linear 

discriminant analysis were the mainstay of early 

methods. Although helpful, these models frequently 

had trouble capturing the intricate and nonlinear 

interactions found in software datasets from the real 

world. 

More potent classifiers, such as decision trees, 

support vector machines, k-nearest neighbours, and 

Naïve Bayes, were introduced as machine learning 

advanced. These methods used software metrics to 

identify trends linked to defect-prone modules, 

including lines of code (LOC), cyclomatic 

complexity, coupling, and inheritance depth. 

Despite their effectiveness in numerous situations, 

these individual classifiers frequently had 

drawbacks like as overfitting and uneven 

performance across datasets. 

Ensemble learning techniques, which mix several 

base models to increase prediction accuracy and 

robustness, became popular as a solution to these 

problems. In software defect datasets, algorithms 

like Random Forest, Gradient Boosting, and 

XGBoost have shown excellent performance, 

especially when managing noisy and unbalanced 

data. These ensemble methods capture more 

patterns in the data while lowering bias and 

volatility. Furthermore, a crucial field of study in 

SDP has been feature selection. Research has 

demonstrated that, in contrast to straightforward 

size-based measurements like LOC, object-oriented 

metrics such as Coupling Between Objects (CBO), 

Depth of Inheritance (DOI), and Response for Class 

(RFC) frequently offer more significant insights on 

fault likelihood.  

Defect prediction tool application into real-world 

settings is another recent development. It has been 

suggested that these models be incorporated into 

web-based platforms and CI/CD pipelines so that 

developers and testers can access them instantly. 

Furthermore, in order to guarantee responsible and 

explicable AI in software engineering contexts, 

there is an increasing focus on transparency and 

fairness in prediction models. 

III. Dataset and Features 

A. Dataset Description 

A systematic collection of method-level software 

measurements intended for binary classification in 

defect prediction tasks served as the study's dataset. 

Every entry in the dataset is a distinct method, 

denoted by a MethodID, and is linked to several 

static code metrics that capture its complexity, 

structure, and design features. Ten input features 

and one target label are included in the dataset: 

Input Features: Typical static code properties like 

Lines of Code (LOC), Cyclomatic Complexity, 

Number of Parameters, Fan In, Fan Out, Coupling 

Between Objects (CBO), Depth of Inheritance 

(DOI), Number of Methods, and Response for Class 

(RFC) are examples of input features (metrics). 

Because of their capacity to represent code 

complexity, modularity, and maintainability, these 

metrics are extensively used in software 

engineering. 

Lines of Code (LOC): Counts the number of 

executable statements in a method, omitting 

comments and blank lines, to determine its size. In 

general, higher LOC denotes more intricate 

techniques that could be more challenging to 

comprehend and manage. 
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Cyclomatic Complexity: Determines how many 

linearly independent pathways there are in the 

source code of a method. This metric, which was 

created by Thomas McCabe, counts the number of 

decision points (including if statements, loops, and 

conditional expressions) plus one to determine how 

complex a program is. More complex control flow 

and maybe more challenging testing and 

maintenance are indicated by higher cyclomatic 

complexity. 

Number of parameters: Indicates how many 

arguments were supplied to a method. Numerous 

parameters in a method could be a sign of 

inadequate design or over-responsibility, which 

could result in flaws. 

Fan In: Indicates how frequently the current 

method is called by other methods. A high fan-in 

could be a sign that a technique is widely used, 

which means it needs to be very reliable to prevent 

the impact of flaws from spreading. 

Fan Out: Indicates the number of other methods 

that the current method calls. A high fan-out could 

be a sign of possible complexity and over-reliance. 

Coupling Between Objects (CBO): Indicates how 

closely classes are related to one another. When 

modifications are made, high coupling may cause 

unintended consequences that could introduce flaws 

during maintenance. 

Depth of inheritance: Is indicated by its Depth of 

Inheritance (DOI). Code that has very deep 

inheritance trees may be harder to read and update. 

Number of Methods: Indicates how many methods 

there are in a class. The single responsibility 

principle may be broken by classes having several 

methods, which could result in further flaws. 

Response For Class (RFC): Indicates the 

collection of possible actions that an object of the 

class could take in reaction to a message it receives. 

Complex classes with a wide range of functionality 

are indicated by high RFC values. 

Comments Ratio: A method's documentation level 

is indicated by the ratio of comment lines to total 

lines. This measure can reveal how effectively a 

method is described, even though it isn't displayed 

in the sample data. 

Target Variable: The Defective column is a binary 

indicator, with 0 denoting a technique that is not 

known to be defective and 1 denoting a method that 

is known to be defective. 

 

Figure 1: Software_default_dataset.csv 

This dataset is a useful starting point for 

developing prediction models that might identify 

potentially problematic elements early in the 

software development process. Supporting 

automated tools for static code analysis and 

ongoing quality control is especially helpful. 

B. Preprocessing Steps 

The dataset was subjected to several preprocessing 

procedures before to machine learning model 

training to guarantee consistency, boost data quality, 

and improve model performance. These procedures 

are necessary to transform the raw metric data into 

a format that supervised learning systems can use. 

• Identifier Removal: There was a 

MethodID column in the dataset that was 

only utilized for identification. This feature 

was removed from the input feature set 

during model training since it has no 

predictive value and can cause noise in the 

learning process. 

• Missing Value Handling: We checked the 

dataset for null or missing values. The 

provided sample was clean but, when 

necessary, a general technique was used to 

accommodate missing data. The following 

numerical columns had missing values, 

Using the column mean or median as an 

impute, or dropped if there was little 

missing data that wouldn't have a major 

impact on the training process. 
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• Feature Scaling: Some models (like SVM 

or logistic regression) benefit from feature 

normalization or standardization, whereas 

tree-based models like Random Forest and 

XGBoost are typically indifferent to 

feature scaling. Features were optionally 

scaled using the following methods, 

depending on the model chosen. 

• Target Label Encoding: It was appropriate 

for binary classification because the target 

column Defective was already in binary 

format (0 for non-defective and 1 for 

defective). No extra encoding was needed. 

• Train-Test Split: Training and testing 

subsets were created from the preprocessed 

dataset, typically using an 80:20 split ratio. 

This enables the model to be assessed on 

one set of data to gauge its generalization 

ability while learning from another. In 

certain instances, the model was trained and 

tested on several distinct data splits using k-

fold cross-validation, which produced more 

reliable performance measures. 

C. Visual Comparison of Model Performance 

A visual comparison was carried out utilizing a bar 

graph that shows the F1-scores attained by each 

model during 5-fold cross-validation in order to 

bolster the numerical analysis of machine learning 

model performance. The graph illustrates how well 

several algorithms forecast software flaws in 

relation to one another. The XGBoost, Gradient 

Boosting, and Random Forest models all obtained 

an F1-score of 1.000, which indicates flawless 

classification performance across all folds, as can be 

seen from the graphic. These models showed their 

resilience and applicability for real-world defect 

prediction tasks by consistently producing results 

while also capturing the dataset's complex patterns. 

Figure 2: Model comparison 

Support Vector Machine (SVM), on the other hand, 

demonstrated outstanding performance as well, 

with an F1-score of 0.9661, making it a competitive 

choice among non-ensemble techniques. With a 

lower F1-score of 0.7048, Logistic Regression 

trailed behind, indicating its inability to handle the 

intricate nonlinear interactions found in the 

software metrics dataset. This discrepancy in 

performance emphasizes how crucial it is to use 

sophisticated ensemble techniques like XGBoost 

where high precision and recall are crucial, 

particularly in software development environments 

where safety is a top priority. The choice of 

XGBoost as the project's final deployed model is 

thus supported by the visual representation, which 

also supports the prior quantitative conclusions. 

IV. Proposed Methodology 

A. Ensemble-Based Model 

An ensemble learning approach is used to increase 

prediction robustness and accuracy. Ensemble 

models generate a more reliable and accurate result 

by combining the predictions of several base 

learners rather than depending on a single classifier. 

Based on the chosen code metrics, historical defect 

data is used in this project to train the ensemble 

model. The model is loaded from a file called 

model.pkl, indicating that it was trained outside and 

serialized using Python's pickle module, even 

though the code files don't specify the precise model 

type. Among the potential ensemble algorithms are: 

Random Forest: A group of decision trees that 

minimize variance by employing feature 

randomness and bootstrap sampling. 

Gradient Boosting: Is also known as XGBoost, 

combines weak learners one after the other, fixing 

the mistakes of the previous one. 

B. Web-Based Prediction System 

Using the Flask framework, a web application is 

created to offer a simple and accessible interface for 

defect prediction. Through a simple and responsive 

interface, this program allows users to interact with 

the model. The two main input methods supported 

by the system are manually entering each feature 

value via an HTML form or uploading a CSV file 

containing several entries. The backend loads the 

trained ensemble model and utilizes it to produce 

predictions after parsing and preprocessing the 

input data. The application adds the prediction 

results to the file and makes it available for 



                   International Scientific Journal of Engineering and Management (ISJEM)                                       ISSN: 2583-6129 
                        Volume: 04 Issue: 04 | April – 2025                                                                              DOI: 10.55041/ISJEM02960                                                                                                                                        

                        An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata        

 

© 2025, ISJEM (All Rights Reserved)     | www.isjem.com                                                         |        Page 6 
 

download when CSV input is used. The outcome for 

form-based input is shown on a separate result page 

that indicates if the program is expected to be 

"Defective," "Not Defective," or "Defective". The 

interface has error handling tools to detect and 

disclose unforeseen problems politely, as well as 

validation mechanisms to help users provide proper 

inputs. 

 

Figure 3: Software Defect Prediction page 

 

Figure 4: Software Defect Prediction result page 

C. Workflow and Deployment 

The system's entire workflow begins with user input 

via the web interface, and then the data is 

preprocessed to make sure it complies with the 

model's requirements. The ensemble model 

receives the cleaned data and produces a binary 

forecast. The forecast is either written into a 

downloadable file (for CSV input) or sent back to 

the user directly (for form input). Easy maintenance 

and future upgrades are made possible by the 

system architecture's modular design, which clearly 

divides the frontend, backend logic, and machine 

learning component. The model can be integrated 

into software engineering workflows using this 

deployment strategy, where real-time defect 

analysis can help with quality control and early 

problem detection throughout development. 

V. Conclusion 

The goal of this research was to employ clever 

machine learning algorithms based on important 

software indicators to forecast software problems. 

Defect-prone modules were accurately identified by 

the model through the analysis of parameters 

including Lines of Code, Complexity, and 

Coupling. Real-time prediction and simple 

accessibility for developers and testers were made 

possible by the system's integration into a web-

based interface. The outcomes showed how well 

data-driven methods work to enhance software 

quality by enabling the early detection of possible 

flaws. This proactive approach can improve overall 

reliability and drastically lower development costs. 

The system is adaptable to many software 

development environments and is scalable. To 

further increase prediction accuracy and 

generalization, the model can be expanded to larger 

and more varied datasets in subsequent research and 

improved using more sophisticated methodologies. 
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