
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02960

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Software Defect Prediction Using an Intelligent Ensemble -

Based Model

B. RUPADEVI1, RATAKONDA CHANDANA2

1Associate Professor, Dept of MCA, Annamacharya Institute of Technology & Sciences, Tirupati, AP, India,

Email:rupadevi.aitt@annamacharyagroup.org

2Post Graduate, Dept of MCA, Annamacharya Institute of Technology & Sciences, Tirupati, AP, India,

Email: chandanaratakonda4@gmail.com

Abstract

Software defect prediction is an essential part of

software quality assurance that seeks to identify

potential issues before they become costly ones.

This paper presents a prediction method that uses

an intelligent ensemble-based machine learning

model to determine if software modules are broken

or not. The model uses static code metrics such as

Lines of Code, Cyclomatic Complexity, Coupling,

and Inheritance Depth to produce predictions.

Users can manually enter measurements or

upload datasets using the system's flexible and

user-friendly interface, which is integrated within

a Flask-based web application. To help developers

and testers prioritize their efforts, clear predictions

and helpful comments are provided. The ensemble

model increases reliability while enhancing

accuracy and robustness by combining the

benefits of many classifiers. This application

demonstrates the usefulness of AI in software

engineering and serves as a foundation for future

developments in automated defect analysis.

Keywords:

Software Defect Prediction, Ensemble Learning,

Machine Learning, Static Code Metrics, Software

Quality Assurance

I. Introduction

The process of developing software is intricate and

ever-changing, encompassing several phases of

design, coding, testing, and maintenance. The

probability of introducing flaws rises with the size

and complexity of

software systems. If unnoticed, these flaws have the

potential to seriously impair software applications'

overall performance, security, and dependability.

Thus, one of the main goals for both developers and

quality assurance teams is to find and fix flaws as

early in the software development lifecycle as

feasible. Defects have traditionally been found

primarily through code reviews and software

testing. Nevertheless, these techniques are

frequently labor-intensive, time-consuming, and

prone to human error. Data-driven strategies like

machine learning have become viable substitutes

for automating error identification and increasing

accuracy in recent years. Among them, software

defect prediction models have drawn interest due to

their capacity to assess metrics at the code level and

forecast the probability of faults prior to

deployment.

The process of training predictive models that can

recognize faulty code components using previous

software data and metrics is known as software

defect prediction. The basic tenet is that software

components with comparable complexity metrics or

code patterns are probably more prone to defects.

These models can reasonably identify flaws in new

or developing software systems by utilizing

machine learning algorithms that have been trained

on historical data.

In this project, we provide an intelligent ensemble-

based software defect prediction model that

combines the advantages of several machine

learning methods to improve prediction accuracy

and robustness. A potent method called ensemble

learning combines the predictions of multiple base

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02960

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

learners to generate a single, more dependable

result. Ensemble models frequently perform better

than standalone models in classification tasks by

addressing the shortcomings of individual

classifiers, particularly in complicated and

unbalanced datasets.

Lines of Code (LOC), Cyclomatic Complexity,

Number of Parameters, Fan In, Fan Out, Coupling

between Objects (CBO), Depth of Inheritance

(DOI), Number of Methods, and Response for Class

(RFC) are among the well-known static code

metrics that the suggested model is based on. These

metrics function as markers of maintainability and

code complexity, both of which are frequently

linked to defect proneness. A software component

that has been labelled as either defective or non-

defective is represented by each instance of the

ensemble model, which is trained on historical

labelled data. The Flask framework is used to create

a web-based application that makes the model

usable and accessible for practical applications.

Two methods of data entry are supported by the

application's user-friendly interface: manually

inputting values via a form or uploading a CSV file

with code metrics. After the input is submitted, the

system analyze it, applies the learned model, and

shows the prediction result, which indicates

whether the software component is likely to be

flawed. Additionally, the program gracefully

manages error situations and gives users insightful

feedback.

The goal of this project is to close the gap between

real-world software engineering and predictive

modelling. Even though numerous studies show

high-accuracy models for defect prediction, very

few offer interactive tools that developers and

testers may use right away in their daily work. This

project seeks to make intelligent defect prediction

impactful and accessible by fusing a sophisticated

ensemble-based predictive engine with an intuitive

web interface.

To increase prediction accuracy and resilience, we

provide an intelligent ensemble-based software

defect prediction model in this project that

incorporates the benefits of multiple machine

learning techniques. The predictions of several base

learners are combined in a powerful technique

known as ensemble learning to produce a single,

more reliable outcome. By overcoming the

drawbacks of individual classifiers, ensemble

models typically outperform standalone models in

classification tasks, especially in complex and

unbalanced datasets.

The proposed model is based on popular static code

metrics, including Lines of Code (LOC),

Cyclomatic Complexity, Number of Parameters,

Fan In, Fan Out, Coupling Between Objects (CBO),

Depth of Inheritance (DOI), Number of Methods,

and Response For Class (RFC). These metrics serve

as indicators of code complexity and

maintainability, two factors that are commonly

connected to defect proneness. Each instance of the

ensemble model is trained on historical labelled

data and represents a software component that has

been labeled as either non-faulty or defective.

A. Practical Implementation

To make the model useable and accessible for real-

world applications, a web-based application is

developed using the Flask framework. The

application's user-friendly interface supports two

data entry methods: uploading a CSV file

containing code metrics or manually entering values

via a form. Following submission of the input, the

system analyzes it, applies the learnt model, and

displays the prediction result, indicating the

likelihood of a software component's flaws. The

application also provides users with useful feedback

and handles error circumstances graciously. This

initiative aims to bridge the gap between predictive

modelling and real-world software engineering.

Few research provides interactive tools that

developers and testers may immediately utilize in

their daily work, even though several studies

provide high-accuracy models for defect prediction.

By combining an advanced ensemble-based

predictive engine with an easy-to-use online

interface, this project aims to make intelligent

defect prediction both impactful and accessible.

B. Project Significance and Contributions

This study significantly advances the subject of

software fault prediction in several ways:

Enhanced prediction accuracy: Our model

performs better than conventional single-classifier

methods by utilizing ensemble learning techniques.

Feature importance analysis: Our methodology

includes a detailed examination of which code

metrics contribute most significantly to defect

prediction, providing insights for preventive coding

practices.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02960

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

Practical deployment: In software development

settings, creating a web-based application helps

close the gap between theoretical models and real-

world implementation.

Comprehensive evaluation: We demonstrate our

ensemble-based model's dependability by thorough

cross-validation and comparison with current

methodologies.

Integration framework: We offer a guide for

incorporating defect prediction into current

software development processes, especially those in

CI/CD and DevOps pipelines.

In conclusion, our study contributes to the field of

software engineering by providing a dependable

and scalable technique for early fault diagnosis. It

utilizes ensemble machine learning to improve

predictive performance and integrates seamlessly

into development workflows through a simple

online interface. The system's output can be used by

software teams to prioritize code review efforts,

better allocate testing resources, and create software

of a higher standard.

II. Literature Survey

It has long been acknowledged that software defect

prediction (SDP), which finds fault-prone

components early in the development lifecycle, is a

crucial tool for enhancing software quality.

Statistical models like logistic regression and linear

discriminant analysis were the mainstay of early

methods. Although helpful, these models frequently

had trouble capturing the intricate and nonlinear

interactions found in software datasets from the real

world.

More potent classifiers, such as decision trees,

support vector machines, k-nearest neighbours, and

Naïve Bayes, were introduced as machine learning

advanced. These methods used software metrics to

identify trends linked to defect-prone modules,

including lines of code (LOC), cyclomatic

complexity, coupling, and inheritance depth.

Despite their effectiveness in numerous situations,

these individual classifiers frequently had

drawbacks like as overfitting and uneven

performance across datasets.

Ensemble learning techniques, which mix several

base models to increase prediction accuracy and

robustness, became popular as a solution to these

problems. In software defect datasets, algorithms

like Random Forest, Gradient Boosting, and

XGBoost have shown excellent performance,

especially when managing noisy and unbalanced

data. These ensemble methods capture more

patterns in the data while lowering bias and

volatility. Furthermore, a crucial field of study in

SDP has been feature selection. Research has

demonstrated that, in contrast to straightforward

size-based measurements like LOC, object-oriented

metrics such as Coupling Between Objects (CBO),

Depth of Inheritance (DOI), and Response for Class

(RFC) frequently offer more significant insights on

fault likelihood.

Defect prediction tool application into real-world

settings is another recent development. It has been

suggested that these models be incorporated into

web-based platforms and CI/CD pipelines so that

developers and testers can access them instantly.

Furthermore, in order to guarantee responsible and

explicable AI in software engineering contexts,

there is an increasing focus on transparency and

fairness in prediction models.

III. Dataset and Features

A. Dataset Description

A systematic collection of method-level software

measurements intended for binary classification in

defect prediction tasks served as the study's dataset.

Every entry in the dataset is a distinct method,

denoted by a MethodID, and is linked to several

static code metrics that capture its complexity,

structure, and design features. Ten input features

and one target label are included in the dataset:

Input Features: Typical static code properties like

Lines of Code (LOC), Cyclomatic Complexity,

Number of Parameters, Fan In, Fan Out, Coupling

Between Objects (CBO), Depth of Inheritance

(DOI), Number of Methods, and Response for Class

(RFC) are examples of input features (metrics).

Because of their capacity to represent code

complexity, modularity, and maintainability, these

metrics are extensively used in software

engineering.

Lines of Code (LOC): Counts the number of

executable statements in a method, omitting

comments and blank lines, to determine its size. In

general, higher LOC denotes more intricate

techniques that could be more challenging to

comprehend and manage.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02960

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

Cyclomatic Complexity: Determines how many

linearly independent pathways there are in the

source code of a method. This metric, which was

created by Thomas McCabe, counts the number of

decision points (including if statements, loops, and

conditional expressions) plus one to determine how

complex a program is. More complex control flow

and maybe more challenging testing and

maintenance are indicated by higher cyclomatic

complexity.

Number of parameters: Indicates how many

arguments were supplied to a method. Numerous

parameters in a method could be a sign of

inadequate design or over-responsibility, which

could result in flaws.

Fan In: Indicates how frequently the current

method is called by other methods. A high fan-in

could be a sign that a technique is widely used,

which means it needs to be very reliable to prevent

the impact of flaws from spreading.

Fan Out: Indicates the number of other methods

that the current method calls. A high fan-out could

be a sign of possible complexity and over-reliance.

Coupling Between Objects (CBO): Indicates how

closely classes are related to one another. When

modifications are made, high coupling may cause

unintended consequences that could introduce flaws

during maintenance.

Depth of inheritance: Is indicated by its Depth of

Inheritance (DOI). Code that has very deep

inheritance trees may be harder to read and update.

Number of Methods: Indicates how many methods

there are in a class. The single responsibility

principle may be broken by classes having several

methods, which could result in further flaws.

Response For Class (RFC): Indicates the

collection of possible actions that an object of the

class could take in reaction to a message it receives.

Complex classes with a wide range of functionality

are indicated by high RFC values.

Comments Ratio: A method's documentation level

is indicated by the ratio of comment lines to total

lines. This measure can reveal how effectively a

method is described, even though it isn't displayed

in the sample data.

Target Variable: The Defective column is a binary

indicator, with 0 denoting a technique that is not

known to be defective and 1 denoting a method that

is known to be defective.

Figure 1: Software_default_dataset.csv

This dataset is a useful starting point for

developing prediction models that might identify

potentially problematic elements early in the

software development process. Supporting

automated tools for static code analysis and

ongoing quality control is especially helpful.

B. Preprocessing Steps

The dataset was subjected to several preprocessing

procedures before to machine learning model

training to guarantee consistency, boost data quality,

and improve model performance. These procedures

are necessary to transform the raw metric data into

a format that supervised learning systems can use.

• Identifier Removal: There was a

MethodID column in the dataset that was

only utilized for identification. This feature

was removed from the input feature set

during model training since it has no

predictive value and can cause noise in the

learning process.

• Missing Value Handling: We checked the

dataset for null or missing values. The

provided sample was clean but, when

necessary, a general technique was used to

accommodate missing data. The following

numerical columns had missing values,

Using the column mean or median as an

impute, or dropped if there was little

missing data that wouldn't have a major

impact on the training process.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02960

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

• Feature Scaling: Some models (like SVM

or logistic regression) benefit from feature

normalization or standardization, whereas

tree-based models like Random Forest and

XGBoost are typically indifferent to

feature scaling. Features were optionally

scaled using the following methods,

depending on the model chosen.

• Target Label Encoding: It was appropriate

for binary classification because the target

column Defective was already in binary

format (0 for non-defective and 1 for

defective). No extra encoding was needed.

• Train-Test Split: Training and testing

subsets were created from the preprocessed

dataset, typically using an 80:20 split ratio.

This enables the model to be assessed on

one set of data to gauge its generalization

ability while learning from another. In

certain instances, the model was trained and

tested on several distinct data splits using k-

fold cross-validation, which produced more

reliable performance measures.

C. Visual Comparison of Model Performance

A visual comparison was carried out utilizing a bar

graph that shows the F1-scores attained by each

model during 5-fold cross-validation in order to

bolster the numerical analysis of machine learning

model performance. The graph illustrates how well

several algorithms forecast software flaws in

relation to one another. The XGBoost, Gradient

Boosting, and Random Forest models all obtained

an F1-score of 1.000, which indicates flawless

classification performance across all folds, as can be

seen from the graphic. These models showed their

resilience and applicability for real-world defect

prediction tasks by consistently producing results

while also capturing the dataset's complex patterns.

Figure 2: Model comparison

Support Vector Machine (SVM), on the other hand,

demonstrated outstanding performance as well,

with an F1-score of 0.9661, making it a competitive

choice among non-ensemble techniques. With a

lower F1-score of 0.7048, Logistic Regression

trailed behind, indicating its inability to handle the

intricate nonlinear interactions found in the

software metrics dataset. This discrepancy in

performance emphasizes how crucial it is to use

sophisticated ensemble techniques like XGBoost

where high precision and recall are crucial,

particularly in software development environments

where safety is a top priority. The choice of

XGBoost as the project's final deployed model is

thus supported by the visual representation, which

also supports the prior quantitative conclusions.

IV. Proposed Methodology

A. Ensemble-Based Model

An ensemble learning approach is used to increase

prediction robustness and accuracy. Ensemble

models generate a more reliable and accurate result

by combining the predictions of several base

learners rather than depending on a single classifier.

Based on the chosen code metrics, historical defect

data is used in this project to train the ensemble

model. The model is loaded from a file called

model.pkl, indicating that it was trained outside and

serialized using Python's pickle module, even

though the code files don't specify the precise model

type. Among the potential ensemble algorithms are:

Random Forest: A group of decision trees that

minimize variance by employing feature

randomness and bootstrap sampling.

Gradient Boosting: Is also known as XGBoost,

combines weak learners one after the other, fixing

the mistakes of the previous one.

B. Web-Based Prediction System

Using the Flask framework, a web application is

created to offer a simple and accessible interface for

defect prediction. Through a simple and responsive

interface, this program allows users to interact with

the model. The two main input methods supported

by the system are manually entering each feature

value via an HTML form or uploading a CSV file

containing several entries. The backend loads the

trained ensemble model and utilizes it to produce

predictions after parsing and preprocessing the

input data. The application adds the prediction

results to the file and makes it available for

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02960

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

download when CSV input is used. The outcome for

form-based input is shown on a separate result page

that indicates if the program is expected to be

"Defective," "Not Defective," or "Defective". The

interface has error handling tools to detect and

disclose unforeseen problems politely, as well as

validation mechanisms to help users provide proper

inputs.

Figure 3: Software Defect Prediction page

Figure 4: Software Defect Prediction result page

C. Workflow and Deployment

The system's entire workflow begins with user input

via the web interface, and then the data is

preprocessed to make sure it complies with the

model's requirements. The ensemble model

receives the cleaned data and produces a binary

forecast. The forecast is either written into a

downloadable file (for CSV input) or sent back to

the user directly (for form input). Easy maintenance

and future upgrades are made possible by the

system architecture's modular design, which clearly

divides the frontend, backend logic, and machine

learning component. The model can be integrated

into software engineering workflows using this

deployment strategy, where real-time defect

analysis can help with quality control and early

problem detection throughout development.

V. Conclusion

The goal of this research was to employ clever

machine learning algorithms based on important

software indicators to forecast software problems.

Defect-prone modules were accurately identified by

the model through the analysis of parameters

including Lines of Code, Complexity, and

Coupling. Real-time prediction and simple

accessibility for developers and testers were made

possible by the system's integration into a web-

based interface. The outcomes showed how well

data-driven methods work to enhance software

quality by enabling the early detection of possible

flaws. This proactive approach can improve overall

reliability and drastically lower development costs.

The system is adaptable to many software

development environments and is scalable. To

further increase prediction accuracy and

generalization, the model can be expanded to larger

and more varied datasets in subsequent research and

improved using more sophisticated methodologies.

VI. References

[1] M. Ali, T. Mazhar, Y. Arif, and S. Alotaibi,

"Software Defect Prediction Using an Intelligent

Ensemble-Based Model," IEEE Access, vol. 11, pp.

1–1, Jan. 2024, doi:

10.1109/ACCESS.2024.3358201.

[2] K. Zhu, N. Zhang, C. Jiang, and D. Zhu,

"IMDAC: A Robust Intelligent Software Defect

Prediction Model via Multi-Objective Optimization

and End-to-End Hybrid Deep Learning Networks,"

Software: Practice and Experience, vol. 54, no. 2,

pp. 308–333, Feb. 2024, doi: 10.1002/spe.3274.

[3] S. Goyal and P. K. Bhatia, "Heterogeneous

Stacked Ensemble Classifier for Software Defect

Prediction," Multimedia Tools and Applications,

vol. 81, pp. 37033–37055, Nov. 2022, doi:

10.1007/s11042-021-11488-6.

[4] Y. Qiao, L. Gong, Y. Zhao, Y. Wang, and M. Wei,

"DeMuVGN: Effective Software Defect Prediction

Model by Learning Multi-View Software

Dependency via Graph Neural Networks," arXiv

preprint arXiv:2410.19550, Oct. 2024.

[5] M. Hesamolhokama, A. Shafiee, M.

Ahmaditeshnizi, M. Fazli, and J. Habibi, "SDPERL:

A Framework for Software Defect Prediction Using

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 04 | April – 2025 DOI: 10.55041/ISJEM02960

 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

Ensemble Feature Extraction and Reinforcement

Learning," arXiv preprint arXiv:2412.07927, Dec.

2024.

[6] H. Tao et al., "Software Defect Prediction

Method Based on Clustering Ensemble Learning,"

IET Software, vol. 2024, no. 1, pp. 1–10, Nov. 2024,

doi: 10.1049/2024/6294422.

[7] G. Xu, Z. Zhu, X. Guo, and W. Wang, "A Joint

Learning Framework for Bridging Defect

Prediction and Interpretation," arXiv preprint

arXiv:2502.16429, Feb. 2025.

[8] A. J. Anju and J. E. Judith, "Hybrid Feature

Selection Method for Predicting Software Defect,"

Journal of Engineering and Applied Science, vol.

71, no. 124, May 2024, doi: 10.1186/s44147-024-

00453-3.

[9] D. P. Gottumukkala, D. Ushasree, and T. V.

Suneetha, "Software Defect Prediction Through

Effective Weighted Optimization Model for

Assured Software Quality," International Journal

of Intelligent Systems and Applications in

Engineering, vol. 12, no. 15s, pp. 619–633, Feb.

2024.

[10] R. Mamatha, P. L. S. Kumari, and A. Sharada,

"Enhanced Software Defect Prediction Through

Homogeneous Ensemble Models," International

Journal of Intelligent Systems and Applications in

Engineering, vol. 12, no. 4s, pp. 676–684, Nov.

2023.

