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Abstract: This paper aims to study some generalised fixed point results in a compact metric space. It mainly 

focuses on the existence and uniqueness of fixed point of self-mappings on a metric space and its 

generalizations. This paper uses iterative techniques to show the existence of a unique fixed point for a self-

mapping satisfying certain generalized contractive conditions.  
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1. INTRODUCTION 

Fixed point theory is a fascinating subject with many applications in various fields of Mathematics, such as 

differential equations and numerical analysis. Also, the existence of a Nash equilibrium in game theory can be 

formulated as a fixed-point problem. Fixed Point Theory has an important role in Mathematical economics. It 

is interesting to discuss the existence and uniqueness of fixed points for the self-mappings defined on compact 

metric spaces. There are several generalizations of the classical contraction mapping theorem of Banach. In 

1961, Edelstein [4] established the existence of a unique fixed point of a self-map T of a compact metric space 

satisfying the inequality 𝑑(𝑇𝑥, 𝑇𝑦) < 𝑑(𝑥, 𝑦), which is a generalization of the Banach Contraction Principle. 

Fisher [5], has proved some results on compact metric spaces. Here we are found some fixed point results for 

contractive mappings on a compact metric Space.  

 

2. BASIC DEFINITION & EXAMPLES 

Definition 2.1: (Metric Space): Let X be a non-empty set. A metric on X is a real-valued function 𝑑: 𝑋 ×

𝑋 → 𝑅 which satisfies the following conditions: 

1. 𝑑(𝑥, 𝑦) ≥ 0,                                                   ∀ 𝑥, 𝑦 ∈ 𝑋, 

2. 𝑑(𝑥, 𝑦) = 0        if and only if 𝑥 = 𝑦        ∀ 𝑥, 𝑦 ∈ 𝑋, 

3. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),                                         ∀ 𝑥, 𝑦 ∈  𝑋     (Symmetry), 

4. 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦),                       ∀𝑥, 𝑦, 𝑧 ∈ 𝑋     (Triangle inequality) 

 

Definition 2.2: (Open Set): A subset 𝐺 of a metric space (𝑋, 𝑑) is said to be open in 𝑋, with respect to the 

metric 𝑑, if 𝐺 is a neighbourhood of each of its points. In other words, if for each 𝑎 ∈ 𝐺, there is an 𝑟 >

0, such that, 𝑠𝑟(𝑎) ⊆ 𝐺. 

 

Example 2.1: On the real line with the usual metric, the singleton set is open. 

 

Definitions 2.3: (Open Cover): Let (𝑋, 𝑑) be a metric space. A family of subsets {𝐴∝}  in 𝑋 is called a cover 

of any subset 𝐴 of 𝑋 if 𝐴 ⊆ ⋃ 𝐴∝  , ∧∝∈∧  is any non-empty index set. If each 𝐴∝ , ∝∈∧, is an open set in 𝑋, 

then the cover {𝐴∝} is called an open cover of 𝐴. 

 

Definition 2.4: (Open Subcover): A subfamily of the family {𝐴∝} which itself is an open cover, is called an 

open subcover of 𝐴.  
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Definition 2.5: (Finite Subcover): If the number of members in the subfamily is finite, it is called a finite 

subcover of 𝐴. 

 

Definition 2.6: (Compact Metric Space): A subset 𝐴 of a metric space (𝑋, 𝑑) is said to be compact if every 

open cover of 𝐴 admits of a finite subcover, i.e., for each family of open subsets {𝐺∝} of 𝑋, for which 𝐴 ⊆

⋃ 𝐺∝ ,∝∈∧  there exists a finite subfamily say {𝐺∝1, 𝐺∝2, … , 𝐺∝𝑛} such that 𝐴 ⊆ ⋃ 𝐺∝𝑖
𝑛
𝑖=1 .  

 

Example 2.2: Any closed interval with the usual metric is compact.  

 

Definition 2.7: Let (𝑋, 𝑑) be a metric space. A mapping 𝑇: 𝑋 → 𝑋 is called 

i. Contraction:  If 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑(𝑥, 𝑦),            ∀ 𝑥, 𝑦 ∈ 𝑋 ,   𝛼 ∈ [0,1). 

ii. Contractive: If 𝑑(𝑇𝑥, 𝑇𝑦) < 𝑓(𝑥, 𝑦),                ∀ 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. 

Theorem 2.1: (Banach Contraction Theorem): A contraction 𝑇 on a complete metric space (𝑋, 𝑑) has a 

unique fixed point. If 𝑧 is the fixed point of the mapping 𝑇, then for any 𝑥 ∈ 𝑋, the sequence {𝑇𝑛𝑥} of iterates 

converges to 𝑧. 

Definition 2.8: (Fixed point): Let (𝑋, 𝑑) be a metric space, then a point is said to be a fixed point of the self-

map 𝑓 ∶ 𝑋 → 𝑋 if  𝑓(𝑥) = 𝑥.  

Example2.3: Let 𝑓: 𝑅 → 𝑅 defined as, 𝑓(𝑥) = 𝑥2 ∀    𝑥 ∈ 𝑅,  then 𝑥 = 0 and 𝑥 = 1,  are the fixed points of 

the mapping 𝑓. 

 

3. MAIN RESULTS 

Theorem 3.1: Let 𝑇 be a continuous self-map of a compact metric space satisfying the conditions,  

𝑑(𝑇(𝑥), 𝑇𝑦) < 𝛼. [𝑑(𝑥, 𝑇(𝑥)) + 𝑑(𝑥, 𝑇(𝑦))] + 𝛽. [𝑑(𝑦, 𝑇(𝑥)) + 𝑑(𝑦, 𝑇(𝑦))]                              ...(3.1) 

where, 0 < 𝛼 < 1      and   0 < 𝛽 < 1 are such that  𝛼 + 𝛽 <
1

3
 . Then 𝑇 has a unique fixed point in X. 

Proof: We define   𝑓 ∶ 𝑋 → [0, ∞] as, 𝑓(𝑥)  = 𝑑(𝑥, 𝑇(𝑥))                     ∀𝑥 ∈ 𝑋. 

Case I:  If 𝑥 =  𝑇(𝑥) for some 𝑥 ∈ 𝑋 then,  𝑥 willl be a fixed point of 𝑋.  

Case II: Suppose 𝑥 ∈ 𝑋 is such that 𝑇(𝑥) ≠ 𝑥 . 

              ∴                     𝑓(𝑇(𝑥))  = 𝑓 (𝑇(𝑥), 𝑇2(𝑥)).  

                                   𝑓(𝑇(𝑥)) = 𝑓 (𝑇(𝑥), 𝑇(𝑦)).  

By applying (3.1), we get,  

𝑓(𝑇(𝑥))  < 𝛼 [𝑑(𝑥, 𝑇(𝑥))  + 𝑑(𝑥, 𝑇2(𝑥))]  + 𝛽[𝑑(𝑇(𝑥), 𝑇(𝑥))  + 𝑑(𝑇(𝑥), 𝑇2(𝑥))] 

𝑓(𝑇(𝑥)) < 𝛼[𝑑(𝑥, 𝑇(𝑥)) + 𝑑 (𝑥, 𝑇(𝑥)) + 𝑑(𝑇(𝑥), 𝑇2(𝑥))] + 𝛽[𝑑(𝑇(𝑥), 𝑇2(𝑥)) + 𝑑(𝑇(𝑥), 𝑇2(𝑥))] 

𝑓(𝑇(𝑥))  < 𝛼[𝑓(𝑥) + 𝑓(𝑥) + 𝑓(𝑇(𝑥))] + 𝛽 𝑓(𝑇(𝑥))

< 2𝛼 𝑓(𝑥)  + (𝛼 + 𝛽) 𝑓(𝑇(𝑥)).                                                . . . (3.2) 

If we have,  𝑓(𝑥)  ≤ 𝑓(𝑇(𝑥)) ,  for 𝑥 ≠ 𝑇(𝑥), then by (3.2) we have  

 𝑓(𝑇(𝑥))  <  (3𝛼 + 𝛽) 𝑓(𝑇(𝑥)) 

This is not possible, since (3𝛼 + 𝛽) < 1.   

Therefore, we are left with only the possibility that  

𝑓(𝑇(𝑥))  < 𝑓(𝑥)                 for 𝑥 ≠ 𝑇(𝑥)                                                       . . . (3.3) 

As 𝑇 and 𝑑 are continuous, 𝑓 is also a continuous function on a compact metric space 𝑋. Hence, by the 

theorem, 𝑓 attains its minimum on 𝑋. Suppose, 𝑓 attains a minimum at 𝑥0 ∈ 𝑋. 

Let, 𝑓(𝑥0)  = min  { 𝑓(𝑥)  ∶ 𝑥 ∈ 𝑋}                                                              . . . (3.4) 

Now, we show that 𝑥0 is a fixed point of  𝑓.  If it is not, we have, 𝑥0 ≠ 𝑇(𝑥0) hence, (3.3) gives, 𝑓(𝑇(𝑥0)) <

𝑓(𝑥0). This contradicts (3.4), thus, we have, 𝑥0  = 𝑇(𝑥0). 

𝑥0 is fixed point of  𝑇.  
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Uniqueness:  Suppose 𝑇 has two fixed points, say 𝑥0, 𝑦0 in 𝑋. Therefore, we have,              𝑇(𝑥0) =

𝑥0 and 𝑇(𝑦0) = 𝑦0. 

Consider, 

 𝑑(𝑥0, 𝑦0)  = 𝑑(𝑇(𝑥0), 𝑇(𝑦0))    

                   <   𝛼 [𝑑(𝑥0, 𝑇(𝑥0))  + 𝑑(𝑥0, 𝑇(𝑦0))] +  𝛽[(𝑦𝑜, 𝑇(𝑦0)) +  𝑑(𝑦0, 𝑇(𝑥0))]  

         < 𝛼 [𝑑(𝑥0, 𝑥0)  + 𝑑(𝑥0, 𝑦0)] +  𝛽[(𝑦𝑜, 𝑦0) + 𝑑(𝑦0, 𝑥0)]  

  𝑑(𝑥0, 𝑦0)  < 𝛼[0 + 𝑑(𝑥0, 𝑦0)]  +  𝛽[𝑑(𝑦0, 𝑥0)  + 0] 

                      < (𝛼 + 𝛽) 𝑑(𝑥0, 𝑦0) 

 This is not possible, since 𝛼 + 𝛽 < 1.  Therefore, 𝑇 has a unique fixed point in 𝑋. 

 

Theorem 3.2:  Let 𝑇 be a self-map on a compact metric space (𝑋, 𝑑) and then 𝑇 satisfies (3.1).Then the 

sequence {𝑇𝑛(𝑥)} converges to the unique fixed point of 𝑇. 

 

Proof:  Let 𝑥0 be a unique fixed point of 𝑇, we have 𝑇(𝑥0) = 𝑥0. Now, we define, 

                𝑑𝑛 = 𝑑(𝑇𝑛(𝑥), 𝑥0)                      ∀𝑥 ∈ 𝑋, 𝑥 ≠ 𝑥0. 

 

Case I:   If 𝑑𝑛 = 0 for some  𝑛 = 𝑁 , 

               Therefore, we have, 𝑇𝑚(𝑥) = 𝑥0               ∀ 𝑚 ≥ 𝑛    … (3.5)       

               Hence,   {𝑇𝑛(𝑥)}  converges to 𝑥0. 

 

 Case II:  If  𝑑𝑛 ≠ 0         ∀ 𝑛, then, we have, 

  𝑑𝑛+1 = 𝑑(𝑇𝑛+1(𝑥), 𝑥0) 

           = 𝑑(𝑇𝑛+1(𝑥), 𝑇𝑛+1(𝑥0)) 

           = 𝑑(𝑇(𝑇𝑛(𝑥), 𝑇(𝑇𝑛(𝑥0)) 

          < 𝛼[𝑑(𝑇𝑛(𝑥), 𝑇(𝑇𝑛(𝑥)) + 𝑑(𝑇𝑛(𝑥), 𝑇𝑛+1(𝑥0))] 

                +𝛽[𝑑(𝑇𝑛(𝑥0), 𝑇(𝑇𝑛(𝑥)) + 𝑑(𝑇𝑛(𝑥0), 𝑇(𝑇𝑛𝑥0)) 

           < 𝛼[𝑑(𝑇𝑛(𝑥) , 𝑇𝑛+1(𝑥)) + 𝑑(𝑇𝑛𝑥, 𝑇𝑛+1𝑥0)] + 𝛽[𝑑(𝑇𝑛𝑥0, 𝑇𝑛+1(𝑥)) + 𝑑(𝑇𝑛(𝑥0), 𝑇𝑛+1(𝑥0))] 

𝑑𝑛+1 < 𝛼[𝑑(𝑇𝑛(𝑥), 𝑥0) + 𝑑(𝑥0, 𝑇𝑛+1(𝑥)) + 𝑑(𝑇𝑛(𝑥), 𝑥0)] + 𝛽[𝑑(𝑇𝑛(𝑥0), 𝑥0) + 𝑑(𝑥0, 𝑇𝑛+1(𝑥)

+ 𝑑(𝑇𝑛(𝑥0), 𝑇𝑛+1(𝑥0))] 

But, 𝑥0 is fixed point of  𝑇, therefore, we have, 𝑇𝑛(𝑥0) = 𝑇𝑛+1(𝑥0) = 𝑥0, which gives, 

𝑑𝑛+1 < 𝛼[𝑑(𝑇𝑛(𝑥), 𝑥0) + 𝑑(𝑇𝑛+1(𝑥)(𝑥0)) + 𝑑(𝑇𝑛(𝑥), 𝑥0)] + 𝛽[𝑑(𝑥0, 𝑥0) + 𝑑(𝑇𝑛+1(𝑥), 𝑥0) + 𝑑(𝑥0, 𝑥0)] 

𝑑𝑛+1 < 𝛼[𝑑𝑛 + 𝑑𝑛+1 + 𝑑𝑛] + 𝛽[0 + 𝑑𝑛+1 + 0]      

          < 2𝛼𝑑𝑛 + (𝛼 + 𝛽)𝑑𝑛+1 

[1 − (𝛼 + 𝛽)]𝑑𝑛+1   < 2𝛼𝑑𝑛  

𝑑𝑛+1 < [
2𝛼

1 − (𝛼 + 𝛽)
] 𝑑𝑛 

𝑑𝑛+1 < 𝑑𝑛       since, 𝛼 + 𝛽 <
1

3
 .           

∴ {𝑑𝑛} is strictly decreasing sequence of positive real numbers and hence, it is a convergent sequence. 

Suppose, lim
𝑛→∞

𝑑𝑛 = 𝑟 (𝑠𝑎𝑦)   (𝑟 ≥ 0), where, 𝑟 = inf  {𝑑𝑛|𝑛 𝜖 𝑁} 

Now,         lim
𝑛→∞

𝑑𝑛 = 𝑟       ⇒      lim
𝑛→∞

𝑑(𝑇𝑛(𝑥), (𝑥0)) = 𝑟 

As, 𝑋 is compact {𝑇𝑛(𝑥)} has a convergent subsequence {𝑇𝑛𝑘(𝑥)}, which converges to          𝑧 ∈ 𝑋. 

∴ lim
𝑘→∞

𝑇𝑛𝑘(𝑥) = 𝑧   , 𝑧 ∈ 𝑋 

 

As, 𝑑 is a continuous function, we have,  
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∴ lim
𝑘→∞

𝑑(𝑇𝑛𝑘(𝑥), (𝑥0)) = 𝑑(𝑧, 𝑥0) 

    𝑖. 𝑒. ,                               lim
𝑘→∞

𝑑𝑛𝑘
= 𝑑(𝑧, 𝑥0)                                       … (3.6) 

But {𝑑𝑛𝑘
} is a subsequence of  {𝑑𝑛}, therefore, we have, 

                                     lim
𝑘→∞

𝑑𝑛𝑘
= 𝑟                                                           … (3.7) 

Hence, (3.6) and (3.7) give,  

                                      𝑑(𝑧, 𝑥0) =  𝑟                                                         … (3.8)        

Moreover,  

lim
𝑘→∞

𝑇𝑛𝑘(𝑥) = 𝑧 ⇒ lim
𝑘⟶∞

𝑇𝑛𝑘+1(𝑥) = lim
𝑘→∞

𝑇(𝑇𝑛𝑘(𝑥)) 

 

               lim
𝑘→∞

𝑇𝑛𝑘(𝑥) = 𝑧 ⇒ lim
𝑘⟶∞

𝑇𝑛𝑘+1(𝑥) = lim
𝑘→∞

𝑇(𝑇𝑛𝑘(𝑥)) = 𝑇(𝑧) 

Since, 𝑇 is a continuous mapping. 

Hence,  

          lim
                𝑘→∞

𝑑𝑛𝑘+1 = lim
𝑘→∞

𝑑 (𝑇𝑛𝑘+1(𝑥), (𝑥0)) = 𝑑(𝑇(𝑧), 𝑥0) 

∴  We get,  

lim
𝑘→∞

𝑑𝑛𝑘+1 = 𝑑(𝑇𝑧, 𝑥0)                                              … (3.9) 

 

 As {𝑑𝑛𝑘+1} is a subsequence of {𝑑𝑛}, we have,   

    lim
𝑘→∞

𝑑𝑛𝑘+1 = 𝑟                                                                                        … (3.10) 

Now, (3.9) and (3.10) gives, 

      𝑑(𝑇(𝑧), 𝑥0) = 𝑟                                                                                      … (3.11)          

Again,  (3.8) and (3.11) we have,  

𝑑(𝑇𝑧, 𝑥0) = 𝑑(𝑧, 𝑥0) = 𝑟                                                                 … (3.12)                   

Now, we will prove that  𝑟 = 0. 

Suppose, 𝑟 ≠ 0.     

Consider, for 𝑇(𝑧) ≠ 𝑥0, we have,  

𝑑(𝑇(𝑧), 𝑥0) = 𝑑(𝑇(𝑧), 𝑇(𝑥0))         ∵ 𝑇𝑥0 = 𝑥0 

𝑑(𝑇(𝑧), 𝑥0) < 𝛼[𝑑(𝑇(𝑧), 𝑥0) + 𝑑(𝑧, 𝑇(𝑥0))] + 𝛽[𝑑(𝑥0, 𝑇(𝑧)) + 𝑑(𝑥0, 𝑇(𝑥0))] 

𝑑(𝑇(𝑧), 𝑥0) < 𝛼[𝑑(𝑇(𝑧), 𝑧) + 𝑑(𝑥0, 𝑧) + 𝑑(𝑧, 𝑥0)] + 𝛽[𝑑(𝑥0, 𝑇(𝑧)) + 𝑑(𝑥0, 𝑥0)] 

𝑑(𝑇(𝑧), 𝑥0) < 𝛼[𝑑(𝑇(𝑧), 𝑥0) + 𝑑(𝑥0, 𝑧) + 𝑑(𝑥0, 𝑧)] + 𝛽[𝑑(𝑇(𝑧), 𝑥0)] 

                    < (𝛼 + 𝛽)𝑑(𝑇(𝑧), 𝑥0) + 2𝛼 𝑑(𝑥0, 𝑧) 

                       (1 − (𝛼 + 𝛽)] 𝑑(𝑇(𝑧), 𝑥0) < 2𝛼 𝑑(𝑥0, 𝑧) 

𝑑(𝑇(𝑧), 𝑥0) < [
2𝛼

1 − (𝛼 + 𝛽)
] 𝑑(𝑥0, 𝑧) 

𝑑(𝑇(𝑧), 𝑥0) < 𝑑(𝑥0, 𝑧)                                    ∵ 𝛼 + 𝛽 <
1

3
 .           

This is a contradiction to (3.12). Hence, we have 𝑟 = 0. 

∴ By (3.12), we have,  

𝑑(𝑇(𝑧), 𝑥0) = 𝑑(𝑧, 𝑥0) 

Hence, the sequence {𝑑𝑛} converges to 𝑟 = 0 as 𝑛 → ∞  

i.e.               lim
𝑛→∞

𝑑𝑛 = 0  ⇒ lim
𝑛→∞

𝑑(𝑇𝑛(𝑥), 𝑥0) = 0 

Hence, the sequence {𝑇𝑛(𝑥)} converges to the fixed point 𝑥0 of 𝑇. Moreover,             {𝑇𝑛(𝑥)} converges to a 

unique fixed point 𝑥0 of  𝑇. 
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4. APPLICATIONS: 

Let, 𝑋 = [0,1] be a compact metric space with respect to the usual metric 𝑑 defined as, 𝑑(𝑥, 𝑦) =

|𝑥 − 𝑦|       ∀ 𝑥, 𝑦 ∈ 𝑋.  Define, 𝑇: 𝑋 →  𝑋 as, 𝑇(𝑥) =
𝑥

4
       ∀ 𝑥 ∈ 𝑋.  

Choose   𝛼 =
1

4
, 𝛽 =

1

24
 ,  Such that, 𝛼 + 𝛽 =

1

4
+

1

24
<

1

3
    

Moreover, we have, for  𝑥 ≠ 𝑦 

                             𝛼[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦)] 

                              =
1

4
[|𝑥 −

𝑥

4
| + |𝑥 −

𝑦

4
|] 

                              =
1

4
[|

3𝑥

4
| + |

4𝑥−𝑦

4
|] 

                               ≥
1

4
|

4𝑥−𝑦

4
| 

                               ≥
1

4
|

4𝑥−4𝑦

4
| 

                               ≥
1

4
|𝑥 − 𝑦| 

                               ≥ |
𝑥

4
−

𝑦

4
| 

                              ≥ 𝑑(𝑇𝑥, 𝑇𝑦) 

𝑖. 𝑒.       𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼. [𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦)] 

Hence, we have, 𝑑(𝑇𝑥, 𝑇𝑥) < 𝛼. [𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦)] + 𝛽[𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦)] 

Hence, all the conditions of theorem 3.1 are satisfied. 

∴ by Theorem (3.1), 𝑇 has a unique fixed point in 𝑋. The unique fixed point is 𝑥 = 0. 

5. CONCLUSIONS 

In this paper, we have defined a contraction-type condition on a mapping. Mappings are defined on 

compact metric spaces. We obtained a unique fixed point for the mappings satisfying the contraction 

condition, and we have generalised some well known fixed point results on compact metric spaces. The 

conclusion of the contraction mapping principle is valid if we consider compact spaces instead of using 

complete spaces, and the conclusion of the contraction mapping principle is not valid if we consider 

contractive mapping instead of contraction. The mappings under consideration in this paper are continuous 

mappings.  
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