
 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 06 | June – 2025 DOI: 10.55041/ISJEM04627
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

SSO Protocols: SAML vs. OAuth2 vs. OpenID Connect - Comparative

Security Analysis

Surya Ravikumar

suryark@gmail.com

Abstract: Single Sign-On (SSO) protocols enable users to authenticate only once and access a multitude

of services, simplifying authentication across various systems and apps. Protocols such as SAML, OAuth2,

and OpenID Connect have become industry standards due to the increased focus on security and user ease.

With an emphasis on their security features, weaknesses, and applicability for different use scenarios, this

study compares and contrasts these three protocols. The purpose of this study is to identify the advantages

and disadvantages of each SSO protocol so that companies may choose the best one by looking at their

authentication processes, token handling, cryptographic safeguards, and practical applications.

Keywords: SSO, SAML, OAuth2, OpenID Connect, Authentication, Security, Identity Federation, Access

Tokens

1. Introduction

The emergence of mobile applications and cloud-

based services has made the usage of safe,

scalable, and intuitive authentication methods

necessary. By enabling users to authenticate only

once and access several systems without re-

authenticating, Single Sign-On (SSO) protocols

meet this requirement. OAuth2, OpenID Connect

(OIDC), and Security Assertion Markup

Language (SAML) are the most often used

protocols among the many others.

SAML was first introduced in the early 2000s,

which is a XML-based standard for sharing

permission and authentication information

between identity providers and service providers.

The IETF introduced OAuth2, a delegation

protocol that is mainly intended for access

authorization as opposed to authentication. Built

on top of OAuth2, OpenID Connect gives

OAuth2 authentication features, forming a

complete identity layer.

Although security was considered in the creation

of these protocols, each offers advantages and

disadvantages of its own. It is crucial to

comprehend their security models in order to

apply the proper protocol in the suitable situation.

The purpose of this work is to present a thorough

security comparison between SAML, OAuth2,

and OpenID Connect.

2. Overview of SSO Protocols

Single Sign-On (SSO) is an authentication

process that allows users to access multiple

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 06 | June – 2025 DOI: 10.55041/ISJEM04627
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

applications or systems with a single set of login

credentials. It is a critical component in identity

and access management, significantly improving

user experience and reducing password

exhaustion while enhancing security. Below is a

detailed overview of the three most prominent

SSO protocols: SAML, OAuth2, and OpenID

Connect.

2.1. SAML (Security Assertion Markup

Language)

SAML is an open standard developed by the

OASIS consortium. It is primarily used for

exchanging authentication and authorization data

between an identity provider (IdP) and a service

provider (SP). SAML uses XML-based messages

and is typically implemented in enterprise

environments where strong identity federation is

required. It supports single sign-on by enabling

the IdP to issue digitally signed authentication

assertions that confirm the user’s identity to the

SP. A typical use case is when an employee logs

in to a corporate portal and gains access to various

internal and third-party applications without

repeated logins.

Key components of SAML include:

Assertions: XML documents that carry

authentication statements, attribute statements,

and authorization decision statements.

Protocols: Define how SAML requests and

responses are made.

Bindings: Specify the transport mechanisms (e.g.,

HTTP POST, HTTP Redirect).

Profiles: Define how SAML should be used in

specific scenarios (e.g., Web Browser SSO

Profile).

2.2. OAuth2 (Open Authorization 2.0)

OAuth2 is an open standard for access delegation,

allowing applications to gain limited access to

user accounts on an HTTP service. It is a

framework rather than a protocol and is widely

used for authorizing third-party applications to

access user data without exposing credentials.

Unlike SAML, OAuth2 is not primarily designed

for authentication, though it can be adapted for

that purpose in specific implementations.

OAuth2 introduces the following roles:

Resource Owner: The user who owns the data.

Client: The application requesting access to the

user’s resources.

Resource Server: The server hosting the user's

data.

Authorization Server: The server issuing access

tokens to the client.

OAuth2 supports several authorization flows,

including:

Authorization Code Grant (used by web and

mobile apps)

Implicit Grant (for browser-based apps)

Resource Owner Password Credentials Grant

(for trusted applications)

Client Credentials Grant (for machine-to-

machine authentication)

2.3 OpenID Connect (OIDC)

OpenID Connect is an identity layer built on top

of OAuth2. It addresses the lack of authentication

capabilities in OAuth2 by introducing an ID

Token and standardizing a set of user information

endpoints. OIDC allows clients to verify the

identity of the end-user and obtain basic profile

information in an interoperable and REST-like

manner.

Key enhancements OIDC brings to OAuth2

include:

ID Token: A JWT that securely conveys the user's

identity.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 06 | June – 2025 DOI: 10.55041/ISJEM04627
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

UserInfo Endpoint: An API endpoint for

retrieving user profile data.

Discovery and Dynamic Registration: Allowing

clients to automatically discover configuration

information and register dynamically with

providers.

OpenID Connect is designed with modern web

and mobile applications in mind and supports a

variety of use cases, from social logins to

enterprise-grade authentication. It has become the

protocol of choice for many large-scale identity

providers.

 SAML OAuth OpenID

Purpos

e

Authenticati

on &

Authorizatio

n

Authorizati

ons

User

authentica

tion

Data

Format

 XML based HTTP for

transmissio

n and JSON

for tokens

URLs for

identities,

frequently

using

JSON

Comple

xity

More

intricate

with XML

configuratio

ns and

schema

Simpler

and lighter

than SAML

Simpler

than

SAML,

slightly

complex

than

OAuth

Securit

y

Conside

ration

Strong

security via

encrypted

and signed

assertions

Strong in

terms of

scopes,

tokens, and

updating

capabilities

Rely on

Open ID

providers

for

authentica

tion;

enhanced

with

OpenID

Connect

Use

Cases

Federated

Identity

Managemen

t with

Enterprise

SSO

Delegated

access to

user

resources

Consumer

facing

applicatio

ns for user

authentica

tion

Relatio

nship

Between IdP

and SP

Between

the

authorizati

on server

and the

client

application

Between

the

provider

of OpenID

and the

reliant

party

 Table 1: SSO Protocol Comparison

3. Authentication and Authorization Flows

Authentication and authorization flows are

central to the operation of SSO protocols,

defining how trust is established and access is

granted.

3.1 SAML Flow

In SAML, the authentication flow typically

follows a Service Provider (SP)-initiated model:

➢ A user attempts to access a service hosted by the

SP.

➢ The SP redirects the user to the Identity Provider

(IdP) with an authentication request.

➢ The user authenticates with the IdP (e.g., via

username and password).

➢ The IdP generates a SAML Assertion and sends

it back to the SP via the user’s browser.

➢ The SP validates the assertion, establishes a

session, and grants access.

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 06 | June – 2025 DOI: 10.55041/ISJEM04627
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

This process relies heavily on browser redirects

and the exchange of signed XML documents. The

SAML assertion carries the authentication and

attribute data and is valid only for a limited

period, helping mitigate replay attacks.

3.2. OAuth2 Flows

OAuth2 defines several grant types, each suited

to different scenarios:

➢ Authorization Code Grant: Used by server-side

applications. The client redirects the user to the

authorization server, obtains an authorization

code, then exchanges it for an access token

securely via the backend.

➢ Implicit Grant: Designed for browser-based apps.

The token is returned directly via the redirect

URI, reducing security since it exposes tokens in

URLs.

➢ Resource Owner Password Credentials Grant:

The user provides their credentials directly to the

client. This is discouraged unless the client is

absolutely trusted.

➢ Client Credentials Grant: Suitable for machine-

to-machine communication, where no user is

involved.

Each of these flows results in an access token that

grants the client limited access to the user’s

resources.

3.3 OpenID Connect Flows

OIDC supports all OAuth2 flows and introduces

additional tokens and steps for identity

verification:

➢ The most common OIDC flow is the

Authorization Code Flow, which returns both an

Access Token and an ID Token.

➢ The ID Token, a JWT, contains claims about the

user and is signed by the Identity Provider,

allowing the client to verify the user's identity

without calling the UserInfo endpoint.

➢ OIDC includes security enhancements like the

nonce parameter to prevent replay attacks and

token substitution.

This layered approach makes OIDC suitable for

authentication-centric use cases, enabling both

identity verification and delegated access.

4. Token Handling,Security Measures and

Security Vulnerabilities

➢ SAML: Uses XML digital signatures and XML

encryption to protect assertions. Relies heavily on

metadata exchange and certificate management.

➢ OAuth2: Uses bearer tokens, often stored in

URLs or headers, and supports optional token

encryption.

➢ OIDC: Utilizes JWTs, which are compact and

easy to parse. JWTs are signed and optionally

encrypted, offering strong security.

Security Vulnerabilities

➢ SAML: While SAML provides robust security

features through digital signatures and

encryption, it is vulnerable to specific attacks

such as XML Signature Wrapping, which

exploits XML’s flexible structure to inject

malicious content. Replay attacks are another

concern, particularly when assertions are not

properly time-bound or uniquely identified.

Additionally, misconfigurations in metadata and

trust relationships between the identity and

service providers can expose critical flaws.

➢ OAuth2: OAuth2’s flexible framework is both a

strength and a weakness. Because it does not

enforce strict token validation rules, insecure

implementations are common. Key

vulnerabilities include access token leakage via

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 06 | June – 2025 DOI: 10.55041/ISJEM04627
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 5

browser history or referer headers, open redirect

attacks, cross-site request forgery (CSRF) on

authorization endpoints, and token substitution.

Improper handling of redirect URIs or inadequate

state parameter checks can be exploited by

attackers.

➢ OIDC: As a layer built on OAuth2, OIDC inherits

its security concerns but addresses several of

them. The introduction of the ID Token, nonce

parameter, and issuer/audience claims enhances

protection against replay and impersonation

attacks. However, poorly implemented discovery

endpoints and dynamic client registration can be

abused if endpoint metadata is not properly

validated. OIDC also requires careful handling of

ID Tokens to avoid exposure or misuse.

5. Cryptographic Strength and

Implementation Considerations

SAML: Utilizes XML Signature and XML

Encryption standards, typically using X.509

certificates for signing and encryption. While

these provide strong cryptographic guarantees,

the complexity of XML processing and signature

validation can lead to subtle implementation

errors if not handled carefully. Another difficulty

is interoperability across vendor

implementations, and vulnerabilities could be

introduced by improperly set up trust

relationships.

➢ OAuth2: Depends heavily on HTTPS to protect

bearer tokens during transmission. OAuth2 does

not specify a token format, so implementations

vary widely in how tokens are structured and

secured. Developers must ensure proper token

storage, handling, and validation mechanisms.

Use of Proof Key for Code Exchange (PKCE) is

recommended to improve security, especially for

mobile and public clients.

➢ OIDC: Enhances OAuth2 by requiring ID Tokens

to be signed using JSON Web Signature (JWS)

and optionally encrypted using JSON Web

Encryption (JWE). These cryptographic

standards are easier to implement securely than

XML-based standards. OIDC also encourages the

use of standard libraries and OpenID Connect

Discovery for automatic endpoint configuration,

reducing the likelihood of human error.

Across all protocols, successful implementation

depends not only on strong cryptographic

primitives but also on secure coding practices,

rigorous input validation, and compliance with

the latest security standards and

recommendations.

6. Use Cases and Suitability

➢ SAML: Best suited for enterprise environments

where centralized identity providers manage

access to internal and external services. SAML is

ideal for academic institutions, government

bodies, and large corporations requiring federated

identity systems. It supports complex trust

models and offers rich attribute exchange

mechanisms.

➢ OAuth2: Ideal for third-party API access and

mobile or web applications that require delegated

authorization. Common use cases include

allowing mobile apps to access user data stored in

cloud services or enabling social media

applications to post on a user’s behalf. It is well-

suited to stateless and distributed architectures

but requires tight control over redirect URIs and

token lifetimes.

➢ OIDC: Preferred for applications requiring strong

authentication alongside delegated authorization.

It is highly suitable for cloud-native applications,

single-page applications (SPAs), and hybrid

mobile apps. With its support for standard

identity claims and seamless integration with

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 06 | June – 2025 DOI: 10.55041/ISJEM04627
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 6

OAuth2, OIDC enables social login systems,

identity federation in SaaS products, and

enterprise-grade SSO with minimal complexity.

Each protocol shines in different scenarios.

Choosing the right one involves balancing ease of

implementation, required security guarantees,

supported platforms, and the need for identity

federation or authorization delegation.

7. Real-World Adoption and Industry Support

➢ SAML remains the prevailing standard in sectors

such as higher education, government, and

healthcare, largely due to its maturity and deep

integration into legacy enterprise identity

infrastructures. Major platforms like Okta

provide extensive support for SAML, and it is a

core component in federated identity networks

like InCommon. The extensive use of SAML in

current deployments guarantees its continuous

importance even as newer protocols gain traction.

➢ OAuth2: In the internet sector, OAuth2 is widely

used and serves as the foundation for API

authorization for almost all of the main web

services. It is also extensively used in mobile and

Internet of Things ecosystems due to its

versatility and bearer token compatibility. The

protocol's acceptance is further cemented by its

inclusion in open standards like FHIR for

healthcare and SMART on FHIR for EHR

integration.

➢ OIDC: The use of OpenID Connect in current

web and enterprise applications has grown

significantly. Because of its adaptability and

robust security posture, identity providers have

adopted it. To enable identity federation in

contemporary microservices architectures, social

login, and single sign-on in SaaS contexts, OIDC

is the recommended protocol. Adoption is further

accelerated by the fact that it is natively supported

by major authentication libraries and SDKs.

 The combined adoption of these protocols by

large-scale cloud platforms, enterprise identity

providers, and open-source ecosystems reflects

their critical role in securing digital identity and

access. As identity needs continue to evolve,

particularly with trends like zero trust,

passwordless authentication, and decentralized

identity, these protocols are expected to adapt and

remain integral to secure access management.

8. Security Best Practices

Regardless of the protocol selected, following

suggested security best practices is necessary for

a safe SSO protocol implementation. The

intricacy of OpenID Connect, OAuth2, and

SAML might lead to vulnerabilities if security

protocols are not properly adhered to. Key

security best practices for each protocol are

included below, along with basic suggestions that

apply to all protocols:

SAML Security Best Practices:

➢ Sign and Encrypt Assertions

➢ Include strict validity windows

(NotBefore and NotOnOrAfter)

➢ Use AudienceRestriction to limit

assertion scope

➢ Validate digital signatures against trusted

identity provider certificates

➢ Maintain updated and clean metadata

➢ Use HTTPS with HSTS for all SAML

endpoints

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 06 | June – 2025 DOI: 10.55041/ISJEM04627
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 7

OAuth2 Security Best Practices:

➢ Use Proof Key for Code Exchange

(PKCE) for public clients

➢ Always validate the state parameter

➢ Enforce exact match on registered

redirect URIs

➢ Use short-lived tokens and implement

token revocation

➢ Protect confidential client credentials

➢ Implement token introspection or

validation

OIDC Security Best Practices:

➢ Include and validate nonce in ID tokens

➢ Validate ID token claims (iss, aud, exp,

iat)

➢ Use JWKS to validate token signatures

➢ Avoid using Implicit Flow; prefer

Authorization Code Flow with PKCE

General Best Practices for All Protocols:

➢ Enforce HTTPS/TLS

➢ Conduct regular security testing

➢ Monitor logs and access patterns

➢ Apply least privilege access principles

➢ Rotate keys, secrets, and certificates

periodically

These best practices bolster the security posture

of SSO deployments by addressing common

pitfalls and known attack vectors. Implementers

should treat the SSO configuration as a critical

security surface and monitor it continuously.

9. Conclusion

The significance of safe and easy-to-use

authentication methods in today's digital

environment cannot be emphasized. SAML,

OAuth2, and OpenID Connect are examples of

single sign-on protocols that each have special

advantages and disadvantages that affect how

well they work in certain settings and scenarios.

All three protocols seek to improve security and

facilitate user access, but their architectural

variations and subtle implementations have a

substantial impact on their security posture,

according to this comparative security analysis.

SAML’s maturity and extensive adoption in

enterprise and government sectors highlight its

robustness in federated identity management and

complex trust relationships. Its reliance on XML

signatures and encryption offers strong

cryptographic guarantees but also introduces

complexity that can lead to implementation

pitfalls if not handled carefully. Vulnerabilities

such as XML Signature Wrapping underline the

importance of rigorous XML processing and

validation techniques.

Delegated authorization is given top priority in

OAuth2's design philosophy, which makes it the

de facto standard for allowing third parties to

access protected resources, particularly in

contexts that are mobile and API-centric. But

because of its adaptability and absence of strict

security regulations, different implementation

strategies have been used, some of which reveal

serious security threats including CSRF attacks

and token leaks. Its security is consequently

highly dependent on developer’s attention to

detail and compliance with suggested best

practices.

OpenID Connect adds an identity layer to

OAuth2's framework, allowing permission and

authentication in a single protocol. This

 International Scientific Journal of Engineering and Management (ISJEM) ISSN: 2583-6129
 Volume: 04 Issue: 06 | June – 2025 DOI: 10.55041/ISJEM04627
 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 8

integration uses well-defined claims, nonce

parameters, and standardized token formats to

overcome many of OAuth2's security issues.

Major cloud providers and identity platforms

have adopted OIDC, demonstrating its efficacy

and appropriateness for contemporary

applications that demand safe, frictionless

authorization in addition to authentication.

Ultimately, selecting the most appropriate SSO

protocol demands a nuanced understanding of

organizational requirements, threat models, and

technology stacks. Organizations must weigh

factors such as the complexity of trust

relationships, the need for identity federation,

deployment environment constraints, and the

criticality of strong cryptographic guarantees.

Furthermore, regardless of the protocol chosen,

security best practices—including robust

cryptographic implementation, secure token

handling, regular security audits, and ongoing

education on emerging threats—are essential to

safeguarding identity and access management

systems.

As the identity landscape continues to evolve

with emerging paradigms such as zero trust,

passwordless authentication, and decentralized

identity, these protocols will need to adapt and

integrate new security enhancements.

Nonetheless, SAML, OAuth2, and OpenID

Connect remain foundational pillars of secure

authentication and authorization, playing a

crucial role in protecting digital identities in an

increasingly interconnected world.

10. References

[1] OASIS (2008). Security Assertion Markup

Language (SAML) V2.0 Technical Overview.

https://docs.oasis-

open.org/security/saml/Post2.0/sstc-saml-tech-

overview-2.0.html

[2] Hardt, D. (2012). The OAuth 2.0

Authorization Framework. IETF RFC 6749.

https://datatracker.ietf.org/doc/html/rfc6749

[3] Jones, M., Bradley, J., & Sakimura, N. (2014).

OpenID Connect Core 1.0. OpenID Foundation.

https://openid.net/specs/openid-connect-core-

1_0-final.html

[4] Fett, D., Küsters, R., & Schmitz, G. (2016). A

Comprehensive Formal Security Analysis of

OAuth 2.0. ACM CCS.

https://dl.acm.org/doi/10.1145/2976749.297838

5

[5] Lodderstedt, T., McGloin, M., & Hunt, P.

(2013). OAuth 2.0 Threat Model and Security

Considerations. IETF RFC 6819.

https://datatracker.ietf.org/doc/html/rfc6819

[6] OpenID Foundation. (n.d.). OpenID Connect

Explained. https://openid.net/connect/

[7] Microsoft. (n.d.).Authentication vs.

authorization. https://learn.microsoft.com/en-

us/entra/identity-platform/authentication-vs-

authorization

[8] Sakimura, N., Bradley, J., Jones, M. B., & de

Medeiros, B. (2023). OpenID Connect Dynamic

Client Registration 1.0. OpenID Foundation.

https://openid.net/specs/openid-connect-

registration-1_0.html

