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Abstract—Cohort-based data is a prevalent structure in 

many industries, enabling longitudinal analyses and tracking 

customer behaviors over time. However, sampling such data for 

model development presents unique challenges, especially when 

events (e.g., responses, purchases) are unevenly distributed 

across cohorts. Random sampling can introduce biases, leading 

to models that fail to generalize. This paper presents a stratified 

sampling framework designed to maintain the proportional 

representation of events and non-events within each cohort, 

even when oversampling or undersampling is applied. The 

approach ensures stable and unbiased models, offering insights 

into practical implementation and evaluation metrics 
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I. INTRODUCTION  

Cohort-based data structures are widely adopted in 
domains such as finance, marketing, and healthcare to capture 
and analyze temporal trends in customer behavior, product 
usage, or treatment outcomes. By grouping observations 
based on a shared characteristic (e.g., acquisition date, 
diagnosis month, or campaign exposure), cohorts enable time-
sensitive and context-aware insights. However, while this 
structure supports more meaningful segmentation and trend 
analysis, it introduces unique challenges during machine 
learning model development—particularly when the target 
variable (event) rates vary significantly across cohorts. 

One critical modeling challenge arises from imbalanced 
class distributions that may not be uniform across cohorts. For 
instance, in a churn prediction model across monthly 
acquisition cohorts, newer cohorts may have lower churn rates 
due to insufficient observation periods, whereas older cohorts 
may show higher rates simply due to extended follow-up. If 
not properly handled, this variation can lead to biased 
learning, overfitting, and reduced generalizability. 

In traditional practice, random sampling is often employed 
to select training and validation datasets. However, this 
approach can disrupt the inherent event/non-event distribution 
within each cohort, effectively diluting cohort-specific 
dynamics. This can mislead the model into learning patterns 
that do not generalize well across time or customer segments. 

To address this, we propose a stratified sampling 
framework specifically designed for cohort-based datasets. 
This framework ensures that sampling occurs within each 
cohort stratum, preserving the relative proportions of event 

and non-event cases. By respecting the distributional 
properties of each cohort, stratified sampling improves: 

• Model calibration, by aligning training data more 
closely with production distributions; 

• Stability across time, reducing temporal bias in 
evaluation metrics; 

• Fairness and interpretability, ensuring no cohort is 
under- or over-represented in model training. 

Unlike simple stratified sampling across the whole dataset, 
our approach applies stratification hierarchically: first by 
cohort, then by class label. This two-level stratification is 
particularly effective in longitudinal or delayed-response 
scenarios where the outcome of interest (e.g., conversion, 
repurchase, readmission) evolves with time. 

This paper outlines the theoretical foundation, practical 
implementation, and empirical benefits of this approach. We 
demonstrate, using real-world marketing and healthcare 
datasets, that cohort-respecting stratified sampling leads to 
more accurate, robust, and interpretable models, particularly 
in the presence of class imbalance and shifting cohort 
characteristics over time [1], [2]. 

II. COHORT SET UP 

A. Cohort Definition 

Cohorts refer to data groupings based on shared 
characteristics or temporal boundaries. For instance In a time-
based cohort design, customers are segmented according to 
their entry or engagement period—commonly by month or 
quarter. For instance, customers acquired in January 2023 
would belong to the "Jan 2023" cohort, those acquired in 
February to the "Feb 2023" cohort, and so on. This temporal 
anchoring allows for both comparative performance tracking 
and behavioral modeling across similar lifecycle stages. 

Each cohort consists of two key components: 

Observation Window: This period precedes the cohort start 
date and is used to aggregate historical data to derive features. 
These may include: 

• Recency: Time since last interaction or transaction 

• Frequency: Count of interactions or purchases 

• Monetary Value: Amount spent, average 
transaction value, etc. 
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Performance Window: The time following the cohort date 
during which the event of interest is tracked. This may 
involve a binary outcome such as purchase, campaign 
response, churn, or clinical outcome (e.g., readmission in 
healthcare). 

 

                                 Fig 1. Cohort Framework  

Figure 1 presents a visual depiction of how cohort-based 
evaluation operates over time for an individual customer. In 
this case, the customer “Joe” is included in multiple cohorts, 
each corresponding to a different reference date (e.g., each 
month). At each cohort time point: 

• A fixed observation window looks back to 
summarize past behavior. 

• A forward-looking performance window determines 
whether the event of interest occurred in the defined 
future period. 

This method is applied systematically to all customers in 
the population, enabling the model to learn patterns that are 
consistent across different time points while capturing 
behavioral dynamics and seasonality. 

Benefits of Separating Observation and Performance 
Windows: 

• Temporal Integrity: Ensures that only past 
information is used to predict future outcomes, 
preventing data leakage and enabling realistic 
simulation of model performance in production. 

• Dynamic Feature Recalculation: By recalculating 
features at each cohort point, the model accounts for 
how customer behavior evolves, improving 
generalizability across time. 

• Behavioral Trend Analysis: Enables trend 
comparisons across cohorts, helping identify how 
customer response patterns shift due to seasonality, 
lifecycle, or campaign exposure. 

 

B. Example  

      Consider a marketing dataset where customers are 

grouped into quarterly cohorts. Each cohort tracks historical 

communications, transactions, and demographics 

(observation window) and measures whether a customer 

responded to a campaign in the following quarter 

(performance window). 

 

 

 

 

 

Table 1 – Cohort wise Events & Non – Events (Example set) 

 
 
This setup highlights varying event rates across cohorts, which 
must be preserved during sampling 

III. PROPOSED SAMPLING FRAMEWORK 

A. Random Sampling 

Random sampling, while simple and widely used, often 
overlooks the underlying structure and temporal dynamics 
embedded in cohort-based datasets. In scenarios where data is 
segmented into cohorts—such as quarterly customer 
acquisition groups—this approach can lead to unintended 
sampling bias, particularly when the event rates vary 
significantly across cohorts. 

Illustrative Example: Consider a dataset where 
customers are grouped into quarterly cohorts, and Q2 exhibits 
a campaign response rate of only 6.7%. If random sampling 
disproportionately selects event cases (responders) from Q2 to 
correct for class imbalance at the global level, it can artificially 
inflate the event proportion within that cohort. This 
misrepresentation can mislead the model into overestimating 
the likelihood of future events in similar Q2-like conditions, 
resulting in overfitting. 

Consequences of Ignoring Cohort-Level Distributions: 

• Bias in Model Training: Random sampling can 
distort the true event-to-non-event ratio within each 
cohort, especially in rare event scenarios. This results 
in the model learning from a distribution that does 
not reflect real-world conditions, degrading its 
predictive power. 

• Model Instability Across Time: A model trained on 
a dataset that fails to respect cohort structure may 
exhibit high variance in performance when evaluated 
across different time periods or customer segments. 
This is particularly problematic in marketing or 
finance, where seasonal trends, economic cycles, or 
customer lifecycle stages heavily influence 
outcomes. 

• Loss of Cohort Integrity: Temporal and behavioral 
signals unique to each cohort—such as changes in 
customer engagement, channel preference, or 
demographic shifts—can be diluted or erased when 
cohort identities are ignored. This undermines the 
ability to extract actionable insights and makes 
downstream campaign optimization less effective. 
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Need for Cohort-Aware Sampling 

• To mitigate these issues, it is essential to adopt 
stratified sampling techniques that maintain the 
original event/non-event ratios within each cohort. 
This preserves the integrity of the cohort structure 
and ensures that models are trained on representative 
and temporally aligned samples, leading to: 

1. Better generalization to future cohorts, 

2. More reliable calibration of predicted 
probabilities, 

3. Improved interpretability and business 
alignment. 

• Loss of Cohort Integrity: Ignoring cohort structures 
can obscure temporal trends or demographic 
differences 

B. Stratified Sampling 

Stratified sampling provides a principled framework to 
preserve the statistical structure of data during the sampling 
process, particularly when the dataset is segmented into 
meaningful subgroups or strata, such as temporal cohorts. In 
cohort-based machine learning applications, this method 
ensures that both event and non-event proportions are 
maintained within each cohort, regardless of whether 
oversampling or undersampling techniques are used to 
address class imbalance. 

This approach is grounded in seminal works by Cochran 
(1977) and Rao (1965), who emphasized the importance of 
proportional representation across strata to minimize bias and 
variance in survey and experimental data [3], [4]. When 
applied to machine learning, the same logic holds: 
maintaining cohort-level distributions supports model 
stability, calibration, and generalization—especially when 
working with imbalanced classification problems where event 
rates differ across cohorts. 

Below are the steps to sample data in a cohort set up. 

• Compute Cohort-Level Proportions: For each 
cohort, calculate the event and non-event rate: 

Event Rate =
No. of events in the cohort

Total Customers in the Cohort
 

•   Apply Sampling: 

o Oversample Events: Within each cohort, 
replicate or synthetically generate 
additional event (positive class) 
observations to increase their 
representation. This is often necessary in 
cohorts with extremely low event rates 
(e.g., less than 5%) to ensure sufficient 
signal for the learning algorithm. 

o Under sample Non-Events: In cohorts 
where non-event observations vastly 
outnumber events, randomly down sample 
non-events while keeping the event-to-non-
event ratio consistent with the original 
cohort distribution or adjusting it slightly 

for learning objectives (such as a 1:1 ratio 
for balanced training). 

Advantages of Cohort-Aware Stratified Sampling 

• Preservation of temporal and behavioral 
patterns: This approach maintains the integrity of 
time-based or behaviorally distinct cohorts, which is 
critical for understanding lifecycle effects and 
evaluating seasonal or campaign-driven changes. 

• Improved model calibration: Since sampling 
aligns with real-world distributions, predicted 
probabilities are more likely to reflect true risk or 
response likelihood across cohorts. 

• Enhanced generalizability: Models trained using 
cohort-respecting samples are less prone to 
overfitting and more robust when deployed on future 
or unseen cohorts. 

 

C. Example             

      Table 2 – Conversion/Event Rate by Cohort  

 

  
       

     Assume a dataset with an overall event rate of 31%, 

representing a total population of 12 million customers. As 

shown in the figure above, this population includes 

approximately 8.9 million non-events and 3.9 million events, 

distributed across multiple cohorts ranging from January 

2018 to July 2019. 

 

In many real-world scenarios, training a machine learning 

model on the entire population may be computationally 

infeasible due to processing time, memory constraints, or 

operational limits. Therefore, it is common practice to select 

a representative subset of the data that reflects the 

characteristics of the full population. However, to ensure 

statistical fidelity and preserve cohort-level behavioral 

patterns, the sampling must maintain both the global class 

proportions and the cohort-wise structure. 

 

For example, consider the goal of extracting a sample 

consisting of 300,000 event cases and 400,000 non-event 

cases. To ensure proportional representation across all 

cohorts, especially when each cohort has varying sizes and 

event rates, the sampling strategy should follow a structured 

process as outlined below: 

 

 

 

 

 

 

Cohort Non-Events Events Total Conversion

1-Jan-18         1,104,008             562,515                1,666,523 34%

1-Apr-18         1,161,012             567,563                1,728,575 33%

1-Jul-18         1,217,355             569,421                1,786,776 32%

1-Oct-18         1,280,360             573,441                1,853,801 31%

1-Jan-19         1,343,081             570,415                1,913,496 30%

1-Apr-19         1,401,135             567,004                1,968,139 29%

1-Jul-19         1,463,713             560,881                2,024,594 28%

Total         8,970,664          3,971,240              12,940,000 31%
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Calculate Cohort-Level Proportions: 

   Proportion of Events in Cohort i: 

 

𝑃events, cohort 𝑖 =
Number of Events in Cohort 𝑖

Total Events in the Population
 

 

    Proportion of Non-Events in Cohort i: 

 

𝑃events, cohort 𝑖 =
Number of Events in Cohort 𝑖

Total Events in the Population
 

 

Determine Sample Sizes for Each Cohort: 

   Event Sample for Cohort i = Pevents, cohort i × 300,000 

   Non-Event Sample for Cohort i = Pnon-events, cohort i × 400,000 

 

Sample from Each Cohort: Once the sample counts are 

determined for each cohort, the required number of events 

and non-events is randomly selected within each cohort to 

create a balanced and representative dataset for model 

development. This ensures that the cohort-level distributions 

are preserved, addressing any potential biases introduced by 

imbalanced or random sampling approaches. 

 

                          
                        Table 3 – Samples by Cohort  

 

 
 

By following the outlined sampling steps, we calculate the 

cohort-specific sample counts presented in the table above. 

 

D. Evaluation  

     After implementing cohort-aware stratified sampling, it is 

essential to evaluate both the sampling fidelity and the 

modeling impact. The evaluation process focuses on 

validating the representativeness of the sampled data and 

measuring improvements in predictive performance and 

generalizability. The following components outline a robust 

evaluation framework: 

 

Cohort Proportionality 

Begin by validating that the sampled dataset maintains the 

original event/non-event ratios within each cohort. This 

step confirms that the stratified sampling process 

correctly preserved the distributional characteristics of 

the full population. Specifically: 

• For each cohort, compute the sampled event rate and 

compare it to the original cohort event rate. 

• Calculate aggregate deviation metrics (e.g., mean 

absolute error across cohorts) to quantify sampling 

accuracy. 

• Visualize the event rate per cohort before and after 

sampling using bar charts or line plots to visually 

inspect alignment. 

This ensures the structural integrity of cohort patterns is 

not compromised, which is critical for models trained on 

time-segmented data. 

   

 Model Performance 

Next, assess whether stratified sampling leads to 

improvements in model performance compared to 

random sampling. Train two versions of the model—one 

on the cohort-stratified sample and the other on a 

randomly drawn sample—and compare their outputs 

using standard classification metrics: 

• ROC-AUC (Receiver Operating Characteristic - 

Area Under Curve): Measures overall 

discriminative ability. 

• Lift at k%: Evaluates how well the model ranks 

true positives in the top-scored decile(s), which is 

especially important in marketing and rare event 

scenarios. 

• Precision and Recall: To examine accuracy and 

coverage on the positive class. 

 

Stratified sampling is expected to improve model 

calibration, reduce overfitting, and yield more stable 

predictions, particularly in cohorts with low event rates. 

 

Back Testing on Cohort-Holdout Set 

To further assess generalizability, conduct back testing 

using a holdout dataset that retains the original cohort 

structures and has not been used during sampling or 

training. This simulates real-world deployment and helps 

answer critical questions: 

• Does the model generalize well to future cohorts? 

• Are temporal patterns (e.g., shifts in behavior, 

campaign effects) correctly captured? 

• Is the model robust to varying event rates across 

time? 

 

Back testing should replicate production scenarios, such 

as predicting outcomes for a future quarter based on prior 

behavior, allowing a realistic evaluation of cohort-aware 

model performance.  

IV. CONCLUSION 

This paper introduces a stratified sampling framework for 
cohort-based data, ensuring that cohort-level event 
distributions are preserved. By maintaining proportionality, 
the approach addresses imbalances and improves model 
stability, making it particularly suited for applications in 
marketing, finance, and other domains reliant on longitudinal 
data. Future work could explore integrating this framework 
with advanced synthetic sampling techniques and domain-
specific weighting strategies. 

 

 

Cohort
Proportion of 

events 

Proportion of 

non-events 
Event Sample

Non-Event 

Sample
Total

1-Jan-18 12% 14% 36,921                   56,659            93,579   

1-Apr-18 13% 14% 38,827                   57,167            95,994   

1-Jul-18 14% 14% 40,711                   57,354            98,066   

1-Oct-18 14% 14% 42,818                   57,759            100,578 

1-Jan-19 15% 14% 44,916                   57,455            102,370 

1-Apr-19 16% 14% 46,857                   57,111            103,968 

1-Jul-19 16% 14% 48,950                   56,494            105,444 

Total 100% 100% 300,000                 400,000          700,000 
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