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ABSTRACT  

Artificial intelligence models (AI-M), Machine learning Models, Neural networks model (NN-M) and adaptive 

neuro fuzzy interface systems (ANFIS-M) methods gained attention now to provide accurate prediction. These 

prediction methods are utilized in all fields, medical fields, cyber security fields, Astronomical fields. Anyway, these 

models may produce some inconsistent results. To overcome these results inconsistency, hybridization in the of ML-

M, AI-M, ANFIS-M models are coming one by one with their own innovations. This paper aims to consolidate the 

works to predict daily evapotranspiration level that will manage the water requirements appropriately. 
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I. INTRODUCTION 

 

Evapotranspiration (ET) is the process by which water is transferred from the land to the atmosphere by 

evaporation from the soil and other surfaces and by transpiration from plants. It is a crucial component of the water 

cycle and influences weather patterns, climate, and agricultural practices. 

Evaporation: The process by which water changes from a liquid to a vapor. This occurs on the surface of water bodies, 

soil, and vegetation. 

Transpiration: The process by which water absorbed by plants, usually through the roots, is evaporated into the 

atmosphere from the plant's surface, primarily through small openings called stomata in the leaves. This process gets 

affected by some factors such as Climate: Temperature, humidity, wind speed, and solar radiation significantly impact 

evapotranspiration rates. Higher temperatures and wind speeds increase evapotranspiration, while higher humidity 

decreases it. Plant Characteristics: Different plants have varying rates of transpiration. Factors include the type of plant, 

its stage of growth, and the density of vegetation. Soil Moisture: The availability of water in the soil affects both 

evaporation and transpiration. Dry soil reduces evaporation and can limit plant growth, thus reducing transpiration. 

Land Use and Cover: Urbanization, deforestation, and agricultural practices can alter evapotranspiration rates by 

changing the surface characteristics and plant cover. 

Here’s how agriculture influences this process: 

Crop Type and Canopy Structure: Different crops have varying rates of transpiration based on their leaf area, root 

structure, and growth stage. For instance, crops like alfalfa or maize have high transpiration rates compared to crops 

like wheat or barley. 

Irrigation Practices: Irrigation increases soil moisture availability, which can enhance both evaporation and 

transpiration. Over-irrigation can lead to higher evaporation losses, while efficient irrigation methods like drip 

irrigation minimize evaporation and target water delivery to plant roots, thus optimizing transpiration. 

Soil Management: Tillage practices can influence soil moisture retention. No-till or reduced-till practices help maintain 

soil structure and organic matter, reducing evaporation. On the other hand, conventional tillage can increase 

evaporation rates by disturbing the soil. 
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Planting Density and Crop Rotation: Dense planting can create a microclimate that reduces soil evaporation but 

increases transpiration due to higher plant biomass. Crop rotation with deep-rooted plants can improve soil structure 

and moisture retention, influencing evapotranspiration rates. 

 

Mulching: Applying mulch reduces soil evaporation by providing a physical barrier that reduces direct sunlight and 

wind exposure. This practice can also moderate soil temperature and improve water use efficiency. 

Climate and Weather Conditions: Agricultural activities are influenced by local climate conditions, which in turn affect 

evapotranspiration rates. Higher temperatures and wind speeds increase evapotranspiration, while higher humidity 

decreases it. 

Use of Cover Crops: Cover crops can reduce soil evaporation during off-seasons by maintaining soil cover and 

improving soil health, thus enhancing overall water retention and availability for future crops. 

Soil Moisture Conservation Techniques: Techniques like contour farming, terracing, and the use of organic matter 

improve soil moisture retention and reduce evaporation losses, positively influencing the balance of evapotranspiration. 

Managing these factors effectively can optimize water use in agriculture, improving crop yields while conserving water 

resources. Evapotranspiration (ET) rates vary widely across the world due to differences in climate, vegetation, soil 

types, and land management practices. Here are some general trends and examples of ET rates in different regions: 

1. Tropical Rainforests: 

o ET rates are very high due to abundant vegetation and high temperatures. 

o Annual ET can exceed 1,500 mm in places like the Amazon Basin. 

2. Temperate Regions: 

o ET rates are moderate and vary with the seasons. 

o In the Midwest United States, annual ET can range from 500 to 800 mm. 

3. Arid and Semi-Arid Regions: 

o ET rates are generally low due to limited water availability. 

o In deserts like the Sahara, ET can be less than 100 mm per year. 

4. Mediterranean Climates: 

o ET rates are moderate to high, with a strong seasonal variation. 

o Southern California has ET rates around 700 to 900 mm annually. 

5. Boreal Forests and Tundra: 

o ET rates are low due to cold temperatures and short growing seasons. 

o In northern Canada and Siberia, ET can be less than 300 mm per year. 

6. Monsoon Regions: 

o ET rates can be high during the wet season and lower during the dry season. 

o In parts of India and Southeast Asia, annual ET can range from 800 to 1,200 mm. 

7. Sub-Saharan Africa: 

o ET rates vary widely depending on the specific region. 

o In the Sahel, ET can be around 200-400 mm, while in more humid regions, it can exceed 1,000 mm. 

8. High Altitude Regions: 

o ET rates can be lower due to cooler temperatures and shorter growing seasons. 

o In the Andes or the Himalayas, ET rates might range from 300 to 600 mm. 
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Figure 1: Evapotranspiration method for 

Let us see the evapotranspiration rate in different region 

Usually, Potential evapotranspiration is higher in the summer, on clearer and less cloudy days, and closer to the equator, 

because of the higher levels of solar radiation that provides the energy (heat) for evaporation. 

Table 1 : Different evapotranspiration rate across the world 

Country Evapotranspiration rate 

South Africa 303 mm-a-1 (2000-2012) 

India 573 mm/yr  (1980-2018) 

United States 0.9 ± 0.4 mm d1 in mesic cities/2.9 ± 0.7 mm d−1 

North Fennoscandia 0.3 mm/day 

Mediterranean region of 

Europe 

1.6 mm/yr 

China 0.93 mm/year 

Aurtralia 1.54 mm/day 

Soviet Union 4−5 mm/day 

Singapore 8.7 g m−2 h−1 to 25.5 g m−2 h−1 

Malaysia 4-5 mm/day 

 

 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument aboard NASA's Terra and Aqua 

satellites. MODIS plays a crucial role in studying global dynamics and processes on the land, in the oceans, and in 

the atmosphere.  
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Table 2: evapotranspiration rate for specific plants 

Plants Evapotranspiration rate (Growing stage average) 

corn and apple tree 400 – 500 mm 

Peas 360 – 400 mm 

Grass 310-330 mm 

Basil 4.2 mm/day 

Neem tree 0.8 cups of water every 12 days neem 

Banyan tree 1.95 kg m−2 h−1 

Banana tree 5 to 6 mm/day 

 

Machine learning methods of calculating evapotranspiration 

A landscape plant's rate of evapotranspiration is equal to the local reference evapotranspiration multiplied by the 

appropriate plant adjustment factor. Or, expressed with symbols: ETL = ET0 × K. The procedure for measuring ET rate 

is given below: 

Key Input Variables for ET Estimation 

The accuracy of machine learning models for ET estimation depends on the quality and relevance of input variables. 

Commonly used inputs include: 

 

Meteorological data: Temperature, humidity, wind speed, solar radiation, and precipitation. 

Remote sensing data: Satellite images providing vegetation indices (e.g., NDVI), land surface temperature, and soil 

moisture. 

Hydrological data: Soil properties, groundwater levels, and surface water availability. 

Example Workflow for ET Estimation Using Machine Learning 

Data Collection: Gather historical data on meteorological, remote sensing, and hydrological variables. 

Data Preprocessing: Clean the data, handle missing values, normalize/standardize features, and perform feature 

selection. 

Model Selection: Choose a suitable ML model (e.g., RF, ANN) based on the data characteristics and the problem 

requirements. 

Model Training: Split the data into training and testing sets, train the model on the training set, and validate it on the 

testing set. 

Model Evaluation: Use performance metrics such as RMSE, MAE, and R² to evaluate the model. 

Model Deployment: Deploy the trained model for operational ET estimation and integrate it with water resource 

management systems. 

 Machine learning methods play the important role in predicting ET rate in every place, but according to data some 

specific methods have to be applied. Some of the methods are described below: 
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Figure 2:Machine learning models for evapotranspiration methods 

 

1. Artificial Neural Networks (ANNs) 

Feedforward Neural Networks (FNN): These are the simplest type of ANN, consisting of an input layer, one or more 

hidden layers, and an output layer. They are widely used for ET estimation due to their ability to model nonlinear 

relationships. Various methods regarding this for evapotranspiration methods are discussed from [6-11] 

Recurrent Neural Networks (RNN) and Long Short-Term Memory Networks (LSTM): These are suitable for time-

series data, making them useful for ET estimation based on historical data. At different climates, how these networks 

can combine in hybrid manner are described in [12]. Time lagged recurrent neural network T-RNN,[13], enhanced 

RNN [14], bidirectional LSTM [15],[16] are described. 

2. Support Vector Machines (SVM) 

SVMs are used for regression tasks (Support Vector Regression - SVR) and are effective in high-dimensional spaces. 

They have been applied to ET estimation with good results, especially when the data is not linearly separable. MODIS 

and AmeriFlux data are used with satellite data, terrestrial data using support vector machine for evapotranspiration 

method are described in the references [17-20]. 

3. Random Forests (RF) 

RF is an ensemble learning method that builds multiple decision trees and merges them to get a more accurate and 

stable prediction. They are robust to overfitting and can handle large datasets, making them suitable for ET estimation. 

Boruta RF for agricultural evapotranspiration method is described in [21]. RF with coupled wavelet method [22], 

combined trapezoidal method is described in [23] 

4. Gradient Boosting Machines (GBM) 

GBMs build trees sequentially, with each tree correcting the errors of the previous one. Variants like XGBoost and 

LightGBM have been used for ET estimation due to their high accuracy and efficiency. Agricultural field is 

combined with cyber physical systems is described in [24]. Some other ensembled algorithms with ET methods are 
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described in [27]. Maize evapotranspiration rate is estimated with SVM, GBM, artificial and deep learning models 

also described in [28]. Some other hydrological parameters also described in [29]. 

5. k-Nearest Neighbors (k-NN) 

k-NN is a simple, instance-based learning algorithm that predicts the ET by averaging the values of the k-nearest 

neighbors in the training data. It’s easy to implement and understand but may be computationally expensive for large 

datasets. Semi-arid continental climate has been described with K-nearest neighbor algorithm is described in [30]. self-

optimizing nearest neighbor algorithms based arid-semiarid environment has been described in [31]. Swarm based 

optimization on k-nearest algorithm also described in [32]. 

6. Gaussian Processes (GP) 

GPs are non-parametric, probabilistic models that are useful for regression tasks. They provide uncertainty estimates 

along with predictions, which can be valuable for ET estimation. Gaussian process with other deep learning models 

also described in [33],[34] 

7. Deep Learning Models 

Convolutional Neural Networks (CNNs): Primarily used for image data, CNNs can also be applied to spatial data in 

ET estimation. For Punjab regional plants, evapotranspiration methods are described in [35]. Other deep learning 

models also described in [36],[37]. 

Autoencoders: These are used for dimensionality reduction and feature learning, which can improve the performance 

of other ML models in ET estimation. This scheme with satellite image data prediction is described in [38] and [39]. 

 

CONCLUSION 

In this paper, estimating evapotranspiration (ET) accurately is critical for effective water resource management, 

irrigation planning, and understanding the hydrological cycle. Traditional methods for ET estimation, such as empirical 

formulas and physically-based models, often require extensive data and are limited in capturing complex nonlinear 

relationships. Machine learning (ML) methods offer a promising alternative due to their ability to model these 

complexities and handle diverse datasets. 

In future, hybrid models for more accurate and reliable ET estimates can be made. Improved Data Integration for 

data for ML models can be created. Real-time Applications can be developed.  
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