
 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 09 | SEPT – 2025 DOI: 10.55041/ISJEM05020
 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 1

Using ZooKeeper for ACL Propagation in Near Real Time

Nikhita Kataria

nikhitakataria@gmail.com

Abstract—Access Control Lists (ACLs) are a critical

component for enforcing security as well as governance of

data in a cloud environment. This necessitates the need for

ensuring ACL changes can propagate quickly and reliably

across infrastructure stack so that services can quickly act

on any ACL change. In this paper we explore how

ZooKeeper; a distributed coordination service can be

leveraged to enable near real-time propagation of ACLs. We

will present a high-level architecture, benchmarks with

experimental setup and failure modes for ACL distribution

using ZooKeeper. This paper will also discuss scalability,

consistency and security models required for handling ACL

changes in a robust fashion.

Keywords— ACLs, ZooKeeper, distributed systems, real-

time security, infrastructure, configuration propagation,

consistency, coordination services, RBAC, security auditing

I. INTRODUCTION

In modern infrastructure platforms which are designed to
automatically converge based on certain user patters, operate
across thousands of geographically distributed machines and
microservices rely on ACLs to enforce principle of least privilege
across diverse set of resources including compute, storage and
network. However, ACL propagation can be a challenging
problem to solve if it’s expected to be fast, reliable and if access
needs to be updated across a distributed set of services.
Traditional mechanisms such as proactive distribution of static
rules or polling based mechanisms are often slow or unreliable
under certain network factors that may cause system failures.
Apache ZooKeeper offers an alternative with its low-latency
coordination functionality and at the same time offering strong
consistency guarantees. In this paper we explore the design and
implementation for a ZooKeeper -based ACL propagation
system that aims to provide real-time updates with low latency,
strong consistency, fault-tolerance, secure handling and auditing
of ACL changes. We will explore how ZooKeeper’s atomic
broadcast and watcher-based distribution proves to be
instrumental in achieving aforementioned guarantees.

In today’s world of growing automated services, ACL
propagation at a scalable level also needs to comply with that
organizational constraints such as struct compliance
requirements by a few systems having a high security profile or
services hosting multiple tenants that should not have access to
each-others data. In this paper we will explore how ZooKeeper’s
propagation model creates a reliable, auditable, and extensible
process for sensitive security configuration in cloud-native
environments.

II. BACKGROUND AND MOTIVATION

 Motivation to use ZooKeeper for ACL distribution stems

from the fact that even a perfectly crafted ACL is not effective

if it is not distributed in real-time across all the necessary

systems. The boundary of security is only as strong as the

weakest link in the system. If ACL updates lag or fail, this may

cause services or users to have unauthorized or extended access

to resources or deny legitimate access affecting security and

availability. Some examples of real-world scenarios that may get

impacted by ACL lag could be revoking access to a terminated

employee, updating interservice authentication policies,

emergency lockout of a compromised resource or granular

permission changes due to security audits. ZooKeeper is a

centralized service capable of maintaining configuration

information while providing distributed synchronization. It

provides a hierarchical namespace, strong consistency via an

atomic broadcasting protocol (ZAB), watches for event

notifications when znodes change and ephemeral nodes for

session-based states. In current industry multiple multi-national

companies already rely on ZooKeeper for metadata distribution,

service discovery and very commonly for leadership election.

III. HIGH LEVEL ARCHITECTURE

 This section presents high level architecture and involves

components with a set role across ACL authorship, propagation,

enforcement and observability around ACL distribution. First,

an admin portal to serve as an interface for security

administrators to manage CRUD operations for ACLs. Second,

a publishing engine that validates and publishes ACLs to

ZooKeeper. Third, ZooKeeper ecosystem with coordination and

consistency engines. Fourth, an ACLWatcher in the form of an

agent deployed on the same nodes where ACLs need to be

applied which will be acting as a client to receive notifications

about changes to the ZooKeeper state. This modular architecture

is the key to ensuring scalability, low-latency, clear separation

of concerns and low mean time to detect issues. Each component

can evolve independently of each other; Admin portal for UX

improvements, publishing engine for validations, ZooKeeper for

distribution or schemas and ACLWatcher for execution and

enforcement. This design would also allow schema changes that

may need to happen in the future and allow creation of context-

aware ACLs and even machine learning–enabled anomaly

detection. This architecture separates concerns across ACL

authorship, propagation, enforcement, and observability.

Figure 1. High level architecture for ACL distribution

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 09 | SEPT – 2025 DOI: 10.55041/ISJEM05020
 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 2

A. Admin Portal

 Admin portal will be a user-friendly web interface for

security administrators or infrastructure operations with

administrative access to manage the lifecycle of ACLs. It would

support capability to Create, Read, Update and Delete ACLs

with role-based access control to ensure that even an admin

operates only on allowed scope. Audit logs and version tracking

on the UI should be embedded to provide accountability,

traceability and complication information in accordance with the

organizational security policies. Audit logs, front-end validation

and version tracking will be embedded in the portal to provide

traceability.

B. Publishing Engine

 Once ACL changes are validated and submitted through

admin portal, publishing engine’s role will be to translate these

definitions into a structured and versioned format. As an

example, if source and destination in an ACL rule have IP

addresses with subnet masks, this engine would validate the

entries for syntactic as well as semantic correctness such as

invalid CIDRs, overlapping rules or any missing metadata. It

will then create individual rules and publish this data to a set of

designated ZooKeeper znodes. This engine will surface a

schematized log and version store ensuring that during break

glass incidents changes can be audited and rolled back.

C. ZooKeeper Ecosystem

 Apache ZooKeeper will act as the central coordination

service in this architecture providing consistent, fault-tolerant

and replicated storage for ACL states across the entire stack. The

hierarchical namespace (znodes) will be used to organize

ACLs by namespaces, services and host types. In this paper, we

organize ACL entries in ZooKeeper znodes via meaningful

keys such as ACL ID, tenant name or environment. As an

example, we create following policies: /acl-policies/web-
prod,/acl-policies/web-stage, /acl-policies/db-

prod and /acl-policies/db-staging where each znode

contains ACLs relevant to its context. Data in each znode will

be structured using a JSON or YAML format to ensure ease of

parsing and in-place updates. These entries capture Rule ID,

source and destination IP with subnet mask, transport protocols,

source and destination port ranges and intended action such as

allow or deny. Advanced models may also encode metadata such

as TTL, audit source, or workflow ID for traceability. Table 1.

presents example entries for znode /acl-policies/web-

prod version 1. This structured representation allows for easy

readability and automated enforcement by downstream agents

such as ACLWatcher.

{

 "version": "1.0",

 "rules": [

 {

 "id": "rule-1",

 "src_ip": "10.1.0.0/16",

 "dst_ip": "192.168.100.0/24",

 "protocol": "tcp",

 "port": "443",

 "action": "allow",

 "comment": "Allow HTTPS from internal net

to web frontend"

 },

 {

 "id": "rule-2",

 "src_ip": "0.0.0.0/0",

 "dst_ip": "192.168.100.50/32",

 "protocol": "tcp",

 "port": "22",

 "action": "deny",

 "comment": "Block SSH access from all to

jump box"

 }

]

}

Table 1. Example entries in Znode /acl-policies/web-prod

D. ACL Watcher

 In any distributed system the actual consumer of ACL is the

target nodes where services are deployed as they rely on updated

ACLs to manage inter or intra service access. The ACL rules

govern entries in local firewall rules or IP tables. ACLWatcher

deployed on every host in the datacenter would monitor

ZooKeeper znodes for changes and apply the respective ACLs

locally by updating iptables, nftables, application configurations

or system permissions. ACLWatcher would be classified as a

security application i.e. require super user permissions to be able

to update the afore-mentioned configurations and can be

deployed as a systemd service, Docker sidecar, or Kubernetes

DaemonSet depending on the environment.

IV. RELIABLE EVENT HANDLING

 Access control lists tend to change often in response to

operational, service and security changes. Since these changes

happen in a distributed manner it is essential to record a timeline

such that debugging and rollback decisions can be taken with

confidence. In this architecture we introduced ACLWatcher as

an agent running on all target nodes which observe changes

however designing a reliable event-handling system around

ZooKeeper requires addressing multiple limitations and caveats.

First, Watchers are one-short notifications i.e. once a watcher

callback is executed it is automatically removed and must be

explicitly re-registered. This necessitates a need to ensure

ACLWatcher immediately processes the notification and re-

registers itself on the znode to ensure future events are not

missed. Second, transient network, service or node failures can

lead to temporary inability to watch or read from a znode. This

is be tackled by implementing retry loops for watch registrations

with exponential backoff to avoid overwhelming ZooKeeper

while recovering for mass outages and ensure ACLWatchers are

self-healing. Third, ACLWatchers might have missed events in

case of client restarts and ensuring eventual consistency in

convergent distributed systems is necessary. To solve this, we

use periodic full reconciliation with ZooKeeper to validate local

ACL state against the desired source of truth to ensure state drifts

due to client-side bugs are eventually resolved. Since ACL

changes are critical it is essential to have a service level objective

(SLO) around it and in this paper, we propose a full sync every

5 minutes.

V. EXPERIMENTAL EVALUATION

 Table 2. presents results from an experiment to determine

how size of ACL entries would affect full sync time from

publishing to ZooKeeper to ACLWatcher detection with 3-node

ensemble running ZooKeeper 3.8.x on a virtual machine with 4

cores and 8GB Kubernetes node. Without any ZooKeeper failure

or network delays, we observe that notification latency for

ZooKeeper is largely independent of the ACL size and parsing

time scales linearly with size of ACLs. Total sync time under 5

seconds for 10,000 rules suggests that near real-time propagation

of ACLs via ZooKeeper is feasible if the ACLWatcher is

optimized for performance as beyond 1000 rules we observe

CPU usage for ACLWatcher increases exponentially. CPU

usage increases linearly due to parsing of ACL rules and in this

paper, we introduce versioning of ACL rules which optimizes

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 09 | SEPT – 2025 DOI: 10.55041/ISJEM05020
 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 3

ACLWatcher by only parsing the rules that have changed. With

versioned updates, ACLWatcher efficiently skips redundant

updates, conserving CPU. One observation is that at 10,000 rules

CPU usage may content with co-located workloads in a

containerized environment justifying delta propagation.
ACL

Size

Notificatio

n

Latency

(ms)

Cpu

Usag

e (%)

Pars

e

Time

(ms)

Enforcemen

t Time (ms)

Total

Sync

Duratio

n (ms)

10 15 1.2 5 20 15

100 17 3.5 10 50 45

1,000 19 17.5 50 180 380

10,00

0

25 61.4 300 1600 3400

Table 2. Comparison of enforcement time with varying ACL sizes.

A. Experimental evalution with optimizations

Even with delta propagation large ACL sets might incur

significant CPU overhead in environments where source and

destination IPs are impacted by nodes where services run.

Considering a Kubernetes based deployment, pods can move

around nodes causing rule changes often. Even one pod

movement would result in delta for ACL to change. To optimize

further we apply ACL rule compaction by merging overlapping

and redundant ACL entries in ACLPublisher before publishing

to ZooKeeper and enable parallel rule application in

ACLWatcher agents using thread pools. Table 3. Covers results

with these variants and their impact on propagation for various

ACL sizes.

ACL

Size

(Rules)

Baseline

Avg

CPU

(%)

+ Delta

Propagation

Avg CPU

(%)

+ Rule

Compaction

Avg CPU

(%)

+ Parallel

Rule

Application

Avg CPU

(%)

10 1.2 0.8 (-33%) 0.7 (-12.5%) 0.6 (-

14.3%)

100 3.5 2.3 (-34%) 2.0 (-13%) 1.7 (-15%)

1,000 17.5 11.6 (-34%) 10.0 (-14%) 8.5 (-15%)

10,000 61.4 42.0 (-32%) 36.0 (-14%) 31.5 (-

12.5%)

Table 3. CPU Usage based on optimization with delta propagation,

rule compaction and parallel rule execution.

B. Experiment evaluation with failures

 Failures could comprise of multiple scenarios such as

network issues, session losses, node restarts, ACLWatcher

crashes or transient read or write failures triggering retries.

Retries often will have an impact on CPU usage causing it to

increase due to extra work on retry attempts specially if

exponential backoffs are used due to additional timer and

recovery logic. Table 4. and Table 5. present the impact of retries

on the same setup post multiple optimizations where every

optimization might also turn into a CPU overhead.

ACL

Size

(Rules

)

Baselin

e Avg

CPU

(%)

Baselin

e +

Failure

s (%)

Delta

Propagatio

n Avg CPU

(%)

Delta

Propagatio

n +

Failures

(%)

10 1.2 1.8

(+50%)

0.8 1.1 (+38%)

100 3.5 5.0

(+43%)

2.3 3.3 (+43%)

1,000 17.5 27.0

(+54%)

11.6 18.5 (+59%)

10,000 61.4 93.0

(+51%)

42.0 63.0 (+50%)

Table 4. Baseline and Delta Propagation with Failures

ACL

Size

(Rule

s)

Rule

Compacti

on Avg

CPU (%)

Rule

Compacti

on +

Failures

(%)

Parallel

Rule

Applicati

on Avg

CPU (%)

Parallel

Rule

Applicati

on +

Failures

(%)

10 0.7 1.0

(+43%)

0.6 1.2

(+100%)

100 2.0 3.0

(+50%)

1.7 2.7

(+59%)

1,000 10.0 16.5

(+65%)

8.5 13.5

(+59%)

10,00

0

36.0 55.0

(+53%)

31.5 48.0

(+52%)
Table 5: Rule Compaction and Parallel Rule Application with Failures

C. Conclusion

In this study, we explored how optimization of ACL updates

with delta propagation, rule compaction and parallel propagation

make a big difference in resource usage which also impacts the

propagation latency as a system with high CPU usage would

cause resource contention impacting overall performance. We

also observe that while failures occur, CPU use spiked due to

retries demonstrating the tradeoff between performance and

resilience. Overall, with optimizations we could with confidence

conclude that ACL propagation can be achieved in near real-

time via ZooKeeper.

VI. SECURITY MODEL

 ZooKeeper out of the box supports authentication

mechanisms using SASL such as Kerberos or plain digest-based

authentication. Znode ACL’s define permissions on who can do

what on a specific znode and in the architecture described in

this paper only ACL publisher engine would be allowed to have

write access to ZooKeeper ensemble. ACLWatchers would be

only allowed read access on the port that would be listening on.

Also, the ZooKeeper ensemble itself is secured using TLS with

host and network level access embedded. Optionally znode

payloads can be encrypted using per-tenant keys obtained from

a centralized Key Management Service (KMS). Experiments in

this paper do not encrypt the payloads and most certainly having

this capability would result in increased latency due to

encryption and decryption time. In terms of auditing, every

change to a znode is logged with timestamp, user or service

initiating the change and delta different from the previous value.

These logs can be maintained in a distributed logging service as

per the compliance requirements of the environment. Each ACL

entry in the ensemble may include a TTL field to automatically

expire permissions after a set period-of-time. ZooKeeper offers

a versioning model that supports point in time rollback using

historical values that can be used in case of outages. These

controls overall help meet the compliance and security

requirements for propagating ACLs.

VII. CHALLENGES AND MITIGATIONS

 ZooKeeper has been adopted for multiple use cases across

industry for coordination and configuration management

however it comes with its own limitations. While designing

ACL storage and propagation mechanics scale is of utmost

importance and one limitation is number of watches that can set

 INTERNATIONAL SCIENTIFIC JOURNAL OF ENGINEERING AND MANAGEMENT (ISJEM) ISSN: 2583-6129
 VOLUME: 04 ISSUE: 09 | SEPT – 2025 DOI: 10.55041/ISJEM05020
 AN INTERNATIONAL SCHOLARLY || MULTIDISCIPLINARY || OPEN ACCESS || INDEXING IN ALL MAJOR DATABASE & METADATA

© 2025, ISJEM (All Rights Reserved) | www.isjem.com | Page 4

per znode. First, since each watch consumes CPU and Memory

resources relying heavily on znodes can quickly hit scalability

issues. Recommendation to solve afore-mentioned scenario is to

store granular paths. For example, increase of placing all ACLs

under /acl-policies/, split the path into multiple buckets based on

tenant thus distributing the watches and reducing load on a

single znode. Second, frequency of writes can overwhelm

ZooKeeper ensemble, leading to degraded performance or

consistency issues. A practical approach is to implement a

batching logic which prevents rapid successive writes and

batches multiple writes into a single operation with a minimum

period as it is important to ensure that propagation stays near

real-time. Third, over a period there is a risk of having a bloated

JSON payload stored in a Znode leading to debuggability issues,

significant memory consumption that further causes slowness in

read/write operations. A layman solution to circumvent this is to

have predefined ACL templates to avoid duplication and strike

a balance between having too granular and too broad ACLs. An

advanced approach is to use compression of payload before

storing to keep the znode size manageable. However, any

compression may result into latency increases and resource

overhead and hence the algorithm used must be simple enough

to minimize impact and advanced enough to provide meaningful

efficiency gains. Finally, failures and partial updates need to be

accounted for. Consumers may miss critical updates due to

transient network issues, session expirations, or simple service

restarts. Such inconsistencies require a period full sync possible

using sequence numbers to detect missed updates. These

strategies combined, help maintain ZooKeeper’s stability and

reliability while enabling it to support complex access control

use cases at scale.

VIII. LEARNINGS

In the previous sections, we presented various experiments
that outlined ripple effect ACL failures can have on other layers
of infrastructures which yielded several learnings. First, ACLs
were responsible for more than 30% of the deployment issues
where either deployment infrastructure had issues or applications
had runtime issues highlighting how ACLs can influence stability
of the infrastructure pipeline. Second, troubleshooting took 4X
longer as ACL related issues were far more time consuming to
identify and resolve than code or configuration issues due to their
indirect nature of impact. Thirst, security was often seen being
sacrificed for speed where 30% of the issues are resolved by
broadening the permissions as a quick fix; a trade-off that
highlights the operational pressure of making applications just
work. These findings validate that ACLs if poorly managed do
not just create isolated failures but have cascading impact on
reliability and at times promote security risks. They also highlight
how important it is to invest in observability and tooling to
operationalize ACLs.

IX. CONCLUSION

 ZooKeeper provides a strong foundation for near real-time

ACL propagation. With a streamlined architecture publishing

and watching changes, versioned updates, and a strong security

model, systems can efficiently deploy ACL changes across fleets

in near real time with very low latency. ZooKeeper’s guarantees

of consistency and ordering makes it very suitable for security-

critical use cases as well. In this paper, we demonstrate through

a distributed design and benchmarks that this approach can meet

the operational demands of a modern distributed system.

Organizations can use this pattern to improve response time for

access changes, reduce human error in enforcement, and

maintain auditable access control at scale.

X. REFERENCES

[1] Apache ZooKeeper Documentation, [Online]. Available:

https://zookeeper.apache.org. [Accessed: Aug. 16, 2025].

[2] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-

free coordination for Internet-scale systems,” in Proc. USENIX Annu.

Tech. Conf. (ATC), Boston, MA, USA, Jun. 2010.

[3] LinkedIn Engineering, “How LinkedIn uses ZooKeeper for

configuration management at scale,” Nov. 2019. [Online]. Available:

https://engineering.linkedin.com. [Accessed: Aug. 16, 2025].

[4] A. Chanda et al., “Security propagation in distributed systems,” in

Proc. ACM Conf. Computer and Communications Security (CCS), Seoul,

South Korea, Nov. 2021.

[5] Netflix Tech Blog, “Managing service auth at scale,” Jul. 2020.

[Online]. Available: https://netflixtechblog.com. [Accessed: Aug. 16,

2025].

[6] AWS Security Blog, “Best practices for implementing ACLs and

RBAC in cloud-native applications,” Mar. 2021. [Online]. Available:

https://aws.amazon.com/blogs/security. [Accessed: Aug. 16, 2025].

[7] Microsoft Azure Architecture Center, “Designing secure ACL and

RBAC propagation models,” 2020. [Online]. Available:

https://learn.microsoft.com/azure/architecture. [Accessed: Aug. 16,

2025].

[8] Kubernetes Documentation, “Using ConfigMaps and Secrets for

distributed configuration,” 2023. [Online]. Available:

https://kubernetes.io/docs. [Accessed: Aug. 16, 2025].

[9] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no.

11, pp. 612–613, Nov. 1979.

[10] Google Cloud Architecture Center, “Securing workload identity

and access control in distributed environments,” 2022. [Online].

Available: https://cloud.google.com/architecture. [Accessed: Aug. 16,

2025].

[11] F. P. Junqueira, B. Reed, and M. Serafini, “Zab: High-

performance broadcast for primary-backup systems,” in Proc.

IEEE/IFIP Dependable Systems and Networks (DSN), Hong Kong,

China, Jun. 2011, pp. 245–256.

[12] Red Hat, “Securing applications with role-based access control

(RBAC),” 2021. [Online]. Available: https://www.redhat.com.

[Accessed: Aug. 16, 2025].

https://zookeeper.apache.org/
https://engineering.linkedin.com/
https://netflixtechblog.com/

