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Abstract—Access Control Lists (ACLs) are a critical 

component for enforcing security as well as governance of 

data in a cloud environment. This necessitates the need for 

ensuring ACL changes can propagate quickly and reliably 

across infrastructure stack so that services can quickly act 

on any ACL change. In this paper we explore how 

ZooKeeper; a distributed coordination service can be 

leveraged to enable near real-time propagation of ACLs. We 

will present a high-level architecture, benchmarks with 

experimental setup and failure modes for ACL distribution 

using ZooKeeper. This paper will also discuss scalability, 

consistency and security models required for handling ACL 

changes in a robust fashion.  
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I. INTRODUCTION 

In modern infrastructure platforms which are designed to 
automatically converge based on certain user patters, operate 
across thousands of geographically distributed machines and 
microservices rely on ACLs to enforce principle of least privilege 
across diverse set of resources including compute, storage and 
network. However, ACL propagation can be a challenging 
problem to solve if it’s expected to be fast, reliable and if access 
needs to be updated across a distributed set of services. 
Traditional mechanisms such as proactive distribution of static 
rules or polling based mechanisms are often slow or unreliable 
under certain network factors that may cause system failures. 
Apache ZooKeeper offers an alternative with its low-latency 
coordination functionality and at the same time offering strong 
consistency guarantees. In this paper we explore the design and 
implementation for a ZooKeeper -based ACL propagation 
system that aims to provide real-time updates with low latency, 
strong consistency, fault-tolerance, secure handling and auditing 
of ACL changes. We will explore how ZooKeeper’s atomic 
broadcast and watcher-based distribution proves to be 
instrumental in achieving aforementioned guarantees. 

In today’s world of growing automated services, ACL 
propagation at a scalable level also needs to comply with that 
organizational constraints such as struct compliance 
requirements by a few systems having a high security profile or 
services hosting multiple tenants that should not have access to 
each-others data. In this paper we will explore how ZooKeeper’s 
propagation model creates a reliable, auditable, and extensible 
process for sensitive security configuration in cloud-native 
environments. 

 

II. BACKGROUND AND MOTIVATION 

 Motivation to use ZooKeeper for ACL distribution stems 

from the fact that even a perfectly crafted ACL is not effective 

if it is not distributed in real-time across all the necessary 

systems. The boundary of security is only as strong as the 

weakest link in the system. If ACL updates lag or fail, this may 

cause services or users to have unauthorized or extended access 

to resources or deny legitimate access affecting security and 

availability. Some examples of real-world scenarios that may get 

impacted by ACL lag could be revoking access to a terminated 

employee, updating interservice authentication policies, 

emergency lockout of a compromised resource or granular 

permission changes due to security audits. ZooKeeper is a 

centralized service capable of maintaining configuration 

information while providing distributed synchronization. It 

provides a hierarchical namespace, strong consistency via an 

atomic broadcasting protocol (ZAB), watches for event 

notifications when znodes change and ephemeral nodes for 

session-based states. In current industry multiple multi-national 

companies already rely on ZooKeeper for metadata distribution, 

service discovery and very commonly for leadership election.  

III. HIGH LEVEL ARCHITECTURE 

 This section presents high level architecture and involves 

components with a set role across ACL authorship, propagation, 

enforcement and observability around ACL distribution. First, 

an admin portal to serve as an interface for security 

administrators to manage CRUD operations for ACLs. Second, 

a publishing engine that validates and publishes ACLs to 

ZooKeeper. Third, ZooKeeper ecosystem with coordination and 

consistency engines. Fourth, an ACLWatcher in the form of an 

agent deployed on the same nodes where ACLs need to be 

applied which will be acting as a client to receive notifications 

about changes to the ZooKeeper state. This modular architecture 

is the key to ensuring scalability, low-latency, clear separation 

of concerns and low mean time to detect issues. Each component 

can evolve independently of each other; Admin portal for UX 

improvements, publishing engine for validations, ZooKeeper for 

distribution or schemas and ACLWatcher for execution and 

enforcement. This design would also allow schema changes that 

may need to happen in the future and allow creation of context-

aware ACLs and even machine learning–enabled anomaly 

detection. This architecture separates concerns across ACL 

authorship, propagation, enforcement, and observability. 

 

 
Figure 1. High level architecture for ACL distribution 
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A. Admin Portal 

 Admin portal will be a user-friendly web interface for 

security administrators or infrastructure operations with 

administrative access to manage the lifecycle of ACLs. It would 

support capability to Create, Read, Update and Delete ACLs 

with role-based access control to ensure that even an admin 

operates only on allowed scope. Audit logs and version tracking 

on the UI should be embedded to provide accountability, 

traceability and complication information in accordance with the 

organizational security policies. Audit logs, front-end validation 

and version tracking will be embedded in the portal to provide 

traceability. 

B. Publishing Engine 

 Once ACL changes are validated and submitted through 

admin portal, publishing engine’s role will be to translate these 

definitions into a structured and versioned format. As an 

example, if source and destination in an ACL rule have IP 

addresses with subnet masks, this engine would validate the 

entries for syntactic as well as semantic correctness such as 

invalid CIDRs, overlapping rules or any missing metadata. It 

will then create individual rules and publish this data to a set of 

designated ZooKeeper znodes. This engine will surface a 

schematized log and version store ensuring that during break 

glass incidents changes can be audited and rolled back.  

C. ZooKeeper Ecosystem 

 Apache ZooKeeper will act as the central coordination 

service in this architecture providing consistent, fault-tolerant 

and replicated storage for ACL states across the entire stack. The 

hierarchical namespace (znodes) will be used to organize 

ACLs by namespaces, services and host types. In this paper, we 

organize ACL entries in ZooKeeper znodes via meaningful 

keys such as ACL ID, tenant name or environment. As an 

example, we create following policies: /acl-policies/web-
prod,/acl-policies/web-stage, /acl-policies/db-

prod and /acl-policies/db-staging where each znode 

contains ACLs relevant to its context.  Data in each znode will 

be structured using a JSON or YAML format to ensure ease of 

parsing and in-place updates. These entries capture Rule ID, 

source and destination IP with subnet mask, transport protocols, 

source and destination port ranges and intended action such as 

allow or deny. Advanced models may also encode metadata such 

as TTL, audit source, or workflow ID for traceability. Table 1. 

presents example entries for znode /acl-policies/web-

prod version 1. This structured representation allows for easy 

readability and automated enforcement by downstream agents 

such as ACLWatcher. 

 
{ 

  "version": "1.0", 

  "rules": [ 

    { 

      "id": "rule-1", 

      "src_ip": "10.1.0.0/16", 

      "dst_ip": "192.168.100.0/24", 

      "protocol": "tcp", 

      "port": "443", 

      "action": "allow", 

      "comment": "Allow HTTPS from internal net 

to web frontend" 

    }, 

    { 

      "id": "rule-2", 

      "src_ip": "0.0.0.0/0", 

      "dst_ip": "192.168.100.50/32", 

      "protocol": "tcp", 

      "port": "22", 

      "action": "deny", 

      "comment": "Block SSH access from all to 

jump box" 

    } 

  ] 

} 

Table 1. Example entries in Znode /acl-policies/web-prod 

D. ACL Watcher 

 In any distributed system the actual consumer of ACL is the 

target nodes where services are deployed as they rely on updated 

ACLs to manage inter or intra service access. The ACL rules 

govern entries in local firewall rules or IP tables. ACLWatcher 

deployed on every host in the datacenter would monitor 

ZooKeeper znodes for changes and apply the respective ACLs 

locally by updating iptables, nftables, application configurations 

or system permissions. ACLWatcher would be classified as a 

security application i.e. require super user permissions to be able 

to update the afore-mentioned configurations and can be 

deployed as a systemd service, Docker sidecar, or Kubernetes 

DaemonSet depending on the environment. 

IV. RELIABLE EVENT HANDLING 

 Access control lists tend to change often in response to 

operational, service and security changes. Since these changes 

happen in a distributed manner it is essential to record a timeline 

such that debugging and rollback decisions can be taken with 

confidence. In this architecture we introduced ACLWatcher as 

an agent running on all target nodes which observe changes 

however designing a reliable event-handling system around 

ZooKeeper requires addressing multiple limitations and caveats. 

First, Watchers are one-short notifications i.e. once a watcher 

callback is executed it is automatically removed and must be 

explicitly re-registered. This necessitates a need to ensure 

ACLWatcher immediately processes the notification and re-

registers itself on the znode to ensure future events are not 

missed. Second, transient network, service or node failures can 

lead to temporary inability to watch or read from a znode. This 

is be tackled by implementing retry loops for watch registrations 

with exponential backoff to avoid overwhelming ZooKeeper 

while recovering for mass outages and ensure ACLWatchers are 

self-healing. Third, ACLWatchers might have missed events in 

case of client restarts and ensuring eventual consistency in 

convergent distributed systems is necessary. To solve this, we 

use periodic full reconciliation with ZooKeeper to validate local 

ACL state against the desired source of truth to ensure state drifts 

due to client-side bugs are eventually resolved. Since ACL 

changes are critical it is essential to have a service level objective 

(SLO) around it and in this paper, we propose a full sync every 

5 minutes.  

V. EXPERIMENTAL EVALUATION 

 Table 2. presents results from an experiment to determine 

how size of ACL entries would affect full sync time from 

publishing to ZooKeeper to ACLWatcher detection with 3-node 

ensemble running ZooKeeper 3.8.x on a virtual machine with 4 

cores and 8GB Kubernetes node. Without any ZooKeeper failure 

or network delays, we observe that notification latency for 

ZooKeeper is largely independent of the ACL size and parsing 

time scales linearly with size of ACLs. Total sync time under 5 

seconds for 10,000 rules suggests that near real-time propagation 

of ACLs via ZooKeeper is feasible if the ACLWatcher is 

optimized for performance as beyond 1000 rules we observe 

CPU usage for ACLWatcher increases exponentially. CPU 

usage increases linearly due to parsing of ACL rules and in this 

paper, we introduce versioning of ACL rules which optimizes 
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ACLWatcher by only parsing the rules that have changed. With 

versioned updates, ACLWatcher efficiently skips redundant 

updates, conserving CPU. One observation is that at 10,000 rules 

CPU usage may content with co-located workloads in a 

containerized environment justifying delta propagation.  
ACL 

Size 

Notificatio

n  

Latency 

(ms) 

Cpu 

Usag

e (%) 

Pars

e 

Time 

(ms) 

Enforcemen

t Time (ms) 

Total 

Sync 

Duratio

n (ms) 

10 15 1.2 5 20 15 

100 17 3.5 10 50 45 

1,000 19 17.5 50 180 380 

10,00

0 

25 61.4 300 1600 3400 

Table 2. Comparison of enforcement time with varying ACL sizes. 

A. Experimental evalution with optimizations 

Even with delta propagation large ACL sets might incur 

significant CPU overhead in environments where source and 

destination IPs are impacted by nodes where services run. 

Considering a Kubernetes based deployment, pods can move 

around nodes causing rule changes often. Even one pod 

movement would result in delta for ACL to change. To optimize 

further we apply ACL rule compaction by merging overlapping 

and redundant ACL entries in ACLPublisher before publishing 

to ZooKeeper and enable parallel rule application in 

ACLWatcher agents using thread pools. Table 3. Covers results 

with these variants and their impact on propagation for various 

ACL sizes. 

 
ACL 

Size 

(Rules) 

Baseline 

Avg 

CPU 

(%) 

+ Delta 

Propagation 

Avg CPU 

(%) 

+ Rule 

Compaction 

Avg CPU 

(%) 

+ Parallel 

Rule 

Application 

Avg CPU 

(%) 

10 1.2 0.8 (-33%) 0.7 (-12.5%) 0.6 (-

14.3%) 

100 3.5 2.3 (-34%) 2.0 (-13%) 1.7 (-15%) 

1,000 17.5 11.6 (-34%) 10.0 (-14%) 8.5 (-15%) 

10,000 61.4 42.0 (-32%) 36.0 (-14%) 31.5 (-

12.5%) 

Table 3. CPU Usage based on optimization with delta propagation, 

rule compaction and parallel rule execution. 

 

B. Experiment evaluation with failures  

 Failures could comprise of multiple scenarios such as 

network issues, session losses, node restarts, ACLWatcher 

crashes or transient read or write failures triggering retries. 

Retries often will have an impact on CPU usage causing it to 

increase due to extra work on retry attempts specially if 

exponential backoffs are used due to additional timer and 

recovery logic. Table 4. and Table 5. present the impact of retries 

on the same setup post multiple optimizations where every 

optimization might also turn into a CPU overhead.  

 

ACL 

Size 

(Rules

) 

Baselin

e Avg 

CPU 

(%) 

Baselin

e + 

Failure

s (%) 

Delta 

Propagatio

n Avg CPU 

(%) 

Delta 

Propagatio

n + 

Failures 

(%) 

10 1.2 1.8 

(+50%) 

0.8 1.1 (+38%) 

100 3.5 5.0 

(+43%) 

2.3 3.3 (+43%) 

1,000 17.5 27.0 

(+54%) 

11.6 18.5 (+59%) 

10,000 61.4 93.0 

(+51%) 

42.0 63.0 (+50%) 

Table 4.  Baseline and Delta Propagation with Failures 

 

ACL 

Size 

(Rule

s) 

Rule 

Compacti

on Avg 

CPU (%) 

Rule 

Compacti

on + 

Failures 

(%) 

Parallel 

Rule 

Applicati

on Avg 

CPU (%) 

Parallel 

Rule 

Applicati

on + 

Failures 

(%) 

10 0.7 1.0 

(+43%) 

0.6 1.2 

(+100%) 

100 2.0 3.0 

(+50%) 

1.7 2.7 

(+59%) 

1,000 10.0 16.5 

(+65%) 

8.5 13.5 

(+59%) 

10,00

0 

36.0 55.0 

(+53%) 

31.5 48.0 

(+52%) 
Table 5: Rule Compaction and Parallel Rule Application with Failures 

C. Conclusion 

In this study, we explored how optimization of ACL updates 

with delta propagation, rule compaction and parallel propagation 

make a big difference in resource usage which also impacts the 

propagation latency as a system with high CPU usage would 

cause resource contention impacting overall performance. We 

also observe that while failures occur, CPU use spiked due to 

retries demonstrating the tradeoff between performance and 

resilience. Overall, with optimizations we could with confidence 

conclude that ACL propagation can be achieved in near real-

time via ZooKeeper. 

VI. SECURITY MODEL 

 ZooKeeper out of the box supports authentication 

mechanisms using SASL such as Kerberos or plain digest-based 

authentication. Znode ACL’s define permissions on who can do 

what on a specific znode and in the architecture described in 

this paper only ACL publisher engine would be allowed to have 

write access to ZooKeeper ensemble. ACLWatchers would be 

only allowed read access on the port that would be listening on. 

Also, the ZooKeeper ensemble itself is secured using TLS with 

host and network level access embedded. Optionally znode 

payloads can be encrypted using per-tenant keys obtained from 

a centralized Key Management Service (KMS). Experiments in 

this paper do not encrypt the payloads and most certainly having 

this capability would result in increased latency due to 

encryption and decryption time. In terms of auditing, every 

change to a znode is logged with timestamp, user or service 

initiating the change and delta different from the previous value. 

These logs can be maintained in a distributed logging service as 

per the compliance requirements of the environment. Each ACL 

entry in the ensemble may include a TTL field to automatically 

expire permissions after a set period-of-time. ZooKeeper offers 

a versioning model that supports point in time rollback using 

historical values that can be used in case of outages. These 

controls overall help meet the compliance and security 

requirements for propagating ACLs. 

VII. CHALLENGES AND MITIGATIONS 

 ZooKeeper has been adopted for multiple use cases across 

industry for coordination and configuration management 

however it comes with its own limitations. While designing 

ACL storage and propagation mechanics scale is of utmost 

importance and one limitation is number of watches that can set 
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per znode. First, since each watch consumes CPU and Memory 

resources relying heavily on znodes can quickly hit scalability 

issues. Recommendation to solve afore-mentioned scenario is to 

store granular paths. For example, increase of placing all ACLs 

under /acl-policies/, split the path into multiple buckets based on 

tenant thus distributing the watches and reducing load on a 

single znode. Second, frequency of writes can overwhelm 

ZooKeeper ensemble, leading to degraded performance or 

consistency issues. A practical approach is to implement a 

batching logic which prevents rapid successive writes and 

batches multiple writes into a single operation with a minimum 

period as it is important to ensure that propagation stays near 

real-time. Third, over a period there is a risk of having a bloated 

JSON payload stored in a Znode leading to debuggability issues, 

significant memory consumption that further causes slowness in 

read/write operations. A layman solution to circumvent this is to 

have predefined ACL templates to avoid duplication and strike 

a balance between having too granular and too broad ACLs. An 

advanced approach is to use compression of payload before 

storing to keep the znode size manageable. However, any 

compression may result into latency increases and resource 

overhead and hence the algorithm used must be simple enough 

to minimize impact and advanced enough to provide meaningful 

efficiency gains. Finally, failures and partial updates need to be 

accounted for. Consumers may miss critical updates due to 

transient network issues, session expirations, or simple service 

restarts. Such inconsistencies require a period full sync possible 

using sequence numbers to detect missed updates. These 

strategies combined, help maintain ZooKeeper’s stability and 

reliability while enabling it to support complex access control 

use cases at scale. 

VIII. LEARNINGS 

In the previous sections, we presented various experiments 
that outlined ripple effect ACL failures can have on other layers 
of infrastructures which yielded several learnings. First, ACLs 
were responsible for more than 30% of the deployment issues 
where either deployment infrastructure had issues or applications 
had runtime issues highlighting how ACLs can influence stability 
of the infrastructure pipeline. Second, troubleshooting took 4X 
longer as ACL related issues were far more time consuming to 
identify and resolve than code or configuration issues due to their 
indirect nature of impact. Thirst, security was often seen being 
sacrificed for speed where 30% of the issues are resolved by 
broadening the permissions as a quick fix; a trade-off that 
highlights the operational pressure of making applications just 
work. These findings validate that ACLs if poorly managed do 
not just create isolated failures but have cascading impact on 
reliability and at times promote security risks. They also highlight 
how important it is to invest in observability and tooling to 
operationalize ACLs.  

IX. CONCLUSION 

 ZooKeeper provides a strong foundation for near real-time 

ACL propagation. With a streamlined architecture publishing 

and watching changes, versioned updates, and a strong security 

model, systems can efficiently deploy ACL changes across fleets 

in near real time with very low latency. ZooKeeper’s guarantees 

of consistency and ordering makes it very suitable for security-

critical use cases as well. In this paper, we demonstrate through 

a distributed design and benchmarks that this approach can meet 

the operational demands of a modern distributed system. 

Organizations can use this pattern to improve response time for 

access changes, reduce human error in enforcement, and 

maintain auditable access control at scale. 
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