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Abstract—Generation of synthetic videos have been a topic
of research for a long time. It can form a basis for a broad
number of applications, from path prediction to contribution
in the entertainment industry. Multiple video generation models
have been proposed but all of them had some shortcomings which
this paper has aimed to overcome. 3D U-Net architecture has been
used with diffusion techniques to generate high quality videos
with promising initial results. Diffusion models have always given
great results, and this paper shows training of data on both
images and videos, to predict a fixed number of future frames.
This has shown better performance than previously proposed
models and overcomes basic issues like unstable training or
narrow outcomes.

In this paper, we propose to extend the U-Net architecture with
gaussian diffusion techniques to produce high quality temporally
consistent videos.

I. INTRODUCTION

Generating temporally consistent video is an important
milestone in generative modeling research. Video Generation
has a lot of applications in the modern world.

A lot of generative models have been proposed throughout
these years, like GANs [1,2], VAEs [3,4,5,6], a combination
of them [7] and flow based models [17]. These have shown
great results, but each has some limitations. For realistic video
generation, it is essential to learn which objects move, how
they move, and how they interact with each other. Diffusion
models are famously used for image generation, giving great
results. Noising and de-noising of images is done to generate
new images. This technique can be used in video generation
too. Multiple synthetic frames can be generated to form a
complete synthetic video.

We propose a diffusion model in combination of 3D U-Nets
for video generation, which gives us great initial results.

3D U-Nets take input volume data, and give segmented 3D
images. Temporal attention blocks will be used.

II. BACKGROUND

Diffusion Models [8,9,10] are generative models that is they
are used to generate data similar to the data on which they
are trained. They work by destroying training data through
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the successive addition of Gaussian noise, and then learn
to recover the data by reversing this noising process. After
training, we just require random sample noise to recover a
new image by repeating the denoising process. U-Net [15,
16] is a convolutional neural network that was developed for
biomedical image segmentation at the Computer Science De-
partment of the University of Freiburg.As the only requirement
for diffusion model is that input and output dimensionality is
identical so for the creation of high-resolution images using
diffusion modelling we use U-Net model architecture.

ITIT. IMPLEMENTATION

Diffusion models are becoming increasingly popular for
generations of images and audio [11, 12, 13, 14]. We aim
to generate synthetic videos using this model.

A. U-NET ARCHITECTURE

We use a standard diffusion model with a U-Net.The model
is given a fixed number of frames of the video at the time
training and using a 3-D Unet [18] over space and time.
We modify the convolution layers from 2-D to 3-D.After the
Unet structure we use 2 attention blocks. One for the spatial
attention which treats the frame axis as the batch axis and the
other for the temporal attention which treats the height and
width axes as the batch axes.

B. THE DIFFUSION MODEL

The diffusion model [19,20,21] in continuous time
[22,23,24,25] is described on the latents z = {z; | t € [0,1]}
following the forward process as described by the markovian
structure
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Where the noise schedule is given by the function )\; =
log(ai/a?)



C. TRAINING

In this section, we go over how to specify the reconstruction
loss weight w(\;) and parameterize the denoising model &
We consider a standard variance-preserving diffusion process
for which 02 = 1 — «f The majority of of the work
that follows chooses to parameterize the denoising model by
directly predicting with a neural network €p(2;) that implicitly
sets #3(2;) = (2t — 04€p(2;)) We optimize the denoising
model by training it with a loss function based on weighted
mean squared error
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This can also be interpreted as a reconstruction loss in
x-space, but with weights assigned based on a weighting
function w(\;) = exp(A:) for log signal-to-noise ratio
At = logla?/o?] The reduction of generation to denoising
can be achieved by optimizing a variational lower bound
on the data log likelihood under the diffusion model, which
is weighted, or by considering it as a form of denoising
score matching[8,11,24,26].In practice, we use the -prediction
parameterization, defined as

wg(2) = (& — oveo(2r))/cu “4)

Train the €g model using a linear schedule to sample t, and
compute the mean squared error in € space.

D. SAMPLER

For this project we have used discrete time ancestral sam-
pler[8].It is a type of MCMC sampler that can be used
to simulate a diffusion process backward in time and can
be used to generate samples from the posterior distribution
of parameters in a Bayesian inference setting, where the
parameters are governed by a diffusion process .This sampler
is designed based on lower and upper bounds on the reverse
process entropy, as described in research papers [27,8,28]. The
forward process can be described in reverse by the conditional
distribution.

pae(ze, @) = eM Moz 4+ (1 — M M)y (3)

and,
oo’ = (1 —eM )02 (6)

It starts with z; drawn from a standard normal distribution N
(0, 1). The sampler then follows a rule to generate the next
sample, zs; from the previous sample z; conditioned on the
observed data #y(z;).The rule is given by:

25 = pg|e(2e, To(2t)) + \/(U;\t2)177(‘7t2|s)75 (7

where ¢ is standard Gaussian noise,y is a hyperparameter that
controls the stochasticity of the sampler, and s,t are drawn
from a uniformly spaced sequence from 1 to 0. This sampler
can be computationally intensive as it requires simulating the
diffusion process multiple times, but it can provide accurate
posterior samples.

IV. RESULTS

We trained our model on the Moving mnist dataset Some
of the samples from the dataset are given below

Below table shows the results on various standard video
generation metrics: FVD (Frechet Video Distance) [29] is
the most popular metric for evaluation of videos which is
built upon FID (Frechet Inception Distance)[30] a common
metric for images. FID is extended to sequential data such as
videos and captures both temporal coherence and the quality
of frames.

SSIM (Structured Similarity Index Metric) [31], LPIPS
(Learned Perpetual Image Patch Similarity) [32] and PSNR
(Peak Signal to Noise Ratio) [33] are the metrics used for
the quality of images, here it is applied to each frame of the
video and the result is averaged out between all the frames.
This gives us information about the quality of each frame.

TABLE 1
EVALUATION METRICS FOR GENERATED VIDEOS
Frames | FVD | SSIM,,, | PSNRy, | LPIPS,,
2 - 06720 | 56.1626 | 0.2013
4 - 0.6717 | 56.1486 | 0.2023
5 161.8478 | 0.6719 | 56.1569 | 0.2020
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Fig. 2. Results from our model




V. CONCLUSION

Video Generation can be used to create videos and mo-
tions that are completely synthetic. It has a wide range of
applications like in VFX, path planning and self driving cars,

etc.

Other models like GANs and VAEs have shown great

results in the past but have their own limitations. Our diffusion
model using a 3D Unet architecture attempts to overcome
those limitations and provide better and more realistic results.
There is a lot of scope for the future, as we can easily add
on variational encoders to extend the number of video frames,
and even add text embedding for contextual video generation.
The current model produces a fixed number of frames. This
can be extended to create longer videos with varying lengths
autoregressively with guidance method. Another extension can
be conditioning the video with text. Text gives context to the
video and improves prediction. We can condition the diffusion
model in the form of BERT-large embeddings.
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