# FOOD RECOMMENDATION SYSTEM

# M.Arunkumar<sup>1</sup>, T. Arun<sup>2</sup>, S. Mohamed Ashiq<sup>3</sup>, G. Raguram<sup>4</sup>

<sup>1</sup>Assistant Professor, Department of Information Technology, Nandha Engineering College-Erode- 638052, Tamilnadu,

<sup>2,3,4</sup>UG Scholar, Information Technology, Nandha Engineering College-Erode- 638052, Tamilnadu, India.

E-mail: arun.thiruvenkatam@gmail.com

**Abstract**. This paper provides an overview of food recommendation systems, which are software programs that suggest food items to users based on their individual preferences, dietary restrictions, and other relevant factors. These systems use machine learning algorithms to analyse user data and provide personalized recommendations.

With the increasing demand for personalized services in the food industry, food recommendation systems are becoming more popular, as users have access to a wealth of data on digital platforms and mobile applications, including nutritional information, reviews, and ratings. The potential impact of food recommendation systems is significant, as they can help users discover new cuisines and restaurants that they might not have otherwise considered. Finally, the paper suggests future research directions in the field of food recommendation systems.

Food recommendation systems are an important area of research due to their potential to revolutionize the food industry by offering personalized services to consumers. These systems leverage the power of machine learning algorithms to analyse vast amounts of data and provide tailored recommendations that cater to individual needs and preferences.

# I. INTRODUCTION

A food recommendation system is an online tool that offers customized food suggestions to users based on their dietary preferences, restrictions, and other relevant factors. As online food ordering and delivery services continue to grow in popularity, food recommendation systems have become increasingly important in guiding users towards informed food choices.

These systems rely on artificial intelligence techniques and machine learning algorithms to analyze user data and generate relevant recommendations. They consider factors such as food preferences, nutritional requirements, past orders, and reviews to provide personalized suggestions.

Food recommendation systems benefit not only consumers but also restaurants and food delivery services. By offering tailored recommendations, these systems can enhance customer satisfaction, increase loyalty, and boost sales. However, data quality and user privacy are key challenges that must be addressed.

Food recommendation systems are designed to provide users with a personalized experience that takes into account their individual preferences and requirements. They can help users discover new dining options, navigate complex menus, and make healthier choices. By analyzing data such as past orders and reviews, these systems can offer relevant suggestions that align with user preferences and dietary restrictions.

# II. LITERATURE REVIEW

- [1] "Food Recommendation Using Deep Learning: A Review" by Zahraa S. Mohammed et al. (2020) This review paper provides an overview of recent developments in the field of food recommendation systems, with a focus on deep learning techniques. The authors discuss the challenges of food recommendation, such as data sparsity and the subjective nature of food preferences, and examine the effectiveness of various deep learning models for addressing these challenges.
- [2] "A Hybrid Food Recommender System Using Collaborative Filtering and Content-Based Filtering" by Aditi Sharma et al. (2020) This paper proposes a hybrid food recommendation system that combines collaborative filtering and content-based filtering techniques. The authors evaluate the effectiveness of the system using a dataset of food reviews and demonstrate that the hybrid approach outperforms both collaborative filtering and content-based filtering methods.
- [3] "Personalized Food Recommendation Based on User Preference and Health Condition" by Yuwen Li et al. (2020) This paper presents a personalized food recommendation system that takes into account both user preferences and health conditions. The authors use a dataset of food reviews and nutritional information to generate personalized recommendations based on the user's dietary requirements and food preferences.
- [4] "A Survey of Food Recommender Systems: Challenges and Opportunities" by Ilaria Torre et al. (2018) This survey paper provides an overview of the challenges and opportunities in the field of food recommendation systems. The authors discuss the various approaches and techniques used in food recommendation.

space model is then utilized by the recommendation system to generate personalized recommendations based on the user's preferences and history. [5] "An Overview of Food Recommender System: Techniques and Challenges" by B.M. Meenakshi and V. Srinivasan (2021) - This review paper provides an overview of the various techniques and challenges involved in developing food recommendation systems. The authors discuss the advantages and disadvantages of collaborative filtering, content- based filtering, and hybrid approaches, and highlight

then used to represent each food item in the database.

## III. PROPOSED SYSTEM

The proposed methodology for a food recommendation system would involve the following steps:

## **Data Collection**

In this stage, information on users' food preferences, dietary requirements, past orders, and reviews will be gathered from multiple sources, including online food ordering platforms, social media platforms, and user surveys. For example, the food ordering platform may have data on the user's previous orders, ratings, and reviews, while social media platforms may provide data on the user's food preferences and dietary requirements based on their posts, likes, and comments. User surveys may be conducted to collect data on food preferences, dietary needs, and overall satisfaction with the food recommendations.

It is essential to gather a diverse and extensive dataset to ensure that the recommendation system provides accurate and relevant recommendations for a broad range of users with varying dietary requirements and food preferences. However, it is equally important to ensure that the data collected is of high quality and is free from any biases or inconsistencies. In collecting and storing user data, data privacy and security must also be considered.

# **Data Preprocessing**

After collecting data, it is important to preprocess it to remove inconsistencies, duplicates, and missing values. Data cleaning is a crucial step in this process, where irrelevant or duplicate data is removed, errors are corrected, and missing values are handled by imputing based on other available information. Normalization is then performed to ensure that all features have a similar range of values. This is important since some features may have a larger range of values than others, leading to bias in generating recommendations. Scaling data ensures that all features are given equal weight in generating recommendations. Feature extraction involves identifying the most important features that can be used to represent food items in the database. This can include identifying key ingredients, nutritional content, and taste profiles. These extracted features are then used in a vector space model to represent each food item in the database. In this model, each food item is represented by a vector of features, including taste, ingredients, nutritional content, and food category.

Data preprocessing is a crucial step in the development of a recommendation system. This involves preparing the data so that it can be utilized effectively by the system. The first step in data preprocessing is to collect relevant data from various sources. This data may include user data, food item data, and other relevant information. Once the data has been collected, it is important to ensure that it is in a usable format for the system.

## **Food Item Representation**

In order to efficiently compare and match food items in a database based on their features, it is necessary to represent them in a suitable format. One method for representing food items is through the use of embeddings. Embeddings are low-dimensional representations of high-dimensional data that can be learned using machine learning algorithms like Word2Vec. By utilizing this approach, food items can be represented as embeddings based on various factors like their ingredients, taste profiles, or nutritional content, which can be learned from the data.

#### **Recommendation Generation**

The recommendation system creates custom food recommendations for each user based on their dietary requirements and preferences. The generation process consists of two steps: user profiling recommendation algorithms. User profiling involves analyzing the user's past orders, ratings, and reviews to create a profile that includes information on food preferences, dietary requirements, and satisfaction with previous recommendations. This information is then used to personalize recommendations for each user.

Recommendation algorithms utilize both the user profile and food item features to generate personalized recommendations. Various types of recommendation algorithms can be employed, such as content-based, collaborative filtering, and hybrid algorithms. Content-based algorithms produce recommendations by comparing the user's preferences to the features of the food items in the database. For instance, if a user has a preference for spicy food, the algorithm will recommend food items with similar taste profiles. Collaborative filtering algorithms, on the other hand, suggest food items based on the preferences of other similar users who share similar preferences.

After the recommendation algorithm generates a list of food items, a ranking system is used to prioritize the recommendations. The ranking system takes into account factors such as the user's dietary restrictions, previous orders, and ratings. The goal is to provide the user with the most relevant and personalized recommendations possible. Another popular type of recommendation algorithm is hybrid algorithms, which combine elements of content-based and collaborative filtering algorithms.

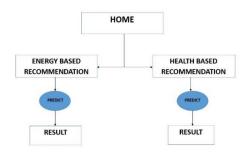



Fig 3.1: FLOW DIAGRAM

# IV. IMPLEMENTATION RESULTS



Fig 4.1: ENERGY BASED RECOMMENDATION SELECTION



Fig 4.2: ENERGY LEVELS

This Figure 4.2, Shows the energy levels available in the module. After entering the energy values it will predict the food.

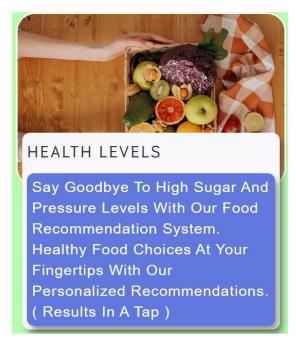



Fig 4.3: HEALTH BASED RECOMMENDATION SELECTION




Fig 4.4: HEALTH LEVELS

This Figure 4.4, Shows the Health levels available in the module. After entering the health values it will predict the food.

# V. RESULT

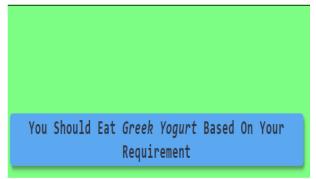



Fig 5.1: ENERGY BASED RECOMMENDATION

This Figure 5.1, Shows the result for energy level based food recommendation.

# You Have Low Pressure. Please Consider The Following Suggestions: 1. Electrolyte-Rich Drinks - Drinking Electrolyte-Rich Beverages Such As Sports Drinks, Coconut Water, Or Fruit Juice Can Help Replenish Fluids And Minerals Lost Due To Low Blood Pressure. 2. Caffeine- Caffeine Can Help Increase Blood Pressure By Constricting Blood Vessels. Drinking Coffee, Tea, Or Other Caffeinated Beverages In Moderation May Help Raise Blood Pressure. However, It Is Important To Note That Excessive Caffeine Intake Can Have Negative Health Effects. 3. Yogurt - Yogurt Is High In Protein And Calcium, Which Can Help Regulate Blood Pressure. Choose Plain, Low-Fat Yogurt Without Added Sugar. 4. Cheese - Cheese Is A Good Source Of Calcium, Which Can Help Regulate Blood Pressure. Choose Low-Fat Or Reduced-Fat Cheese. 5. Hummus - Hummus Is Made From Chickpeas, Which Are High In Protein, Fiber, And Minerals Such As Potassium And Magnesium, Which Can Help Regulate Blood Pressure. Serve With Whole-Grain Crackers Or Raw Vegetables.

Fig 5.2: HEALTH BASED RECOMMENDATION

This Figure 5.2, Shows the result for Health level based food recommendation.

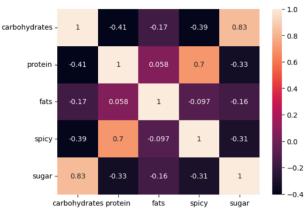



Fig 5.3: ENERGY CONTENTS

This Figure 5.3, Shows the energy contents available for prediction.

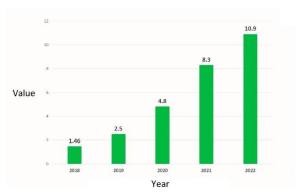



Fig 5.4: YEAR BASED VALUE

This Figure 5.4, Shows the rate of accuracy in years.

# V. CONCLUSION

To sum up, food recommendation systems are beneficial for people seeking personalized food suggestions. These systems utilize techniques like collaborative and content-based filtering to suggest foods based on the user's dietary restrictions, nutritional requirements, and taste preferences. These systems can be accessed via mobile apps, websites, and other platforms, providing valuable information on recipes, restaurants, and ingredients. However, it's essential to note that these systems are not always accurate, and it's crucial to use them in conjunction with other sources of information like personal knowledge, expert opinions, and food labeling. The success of a food recommendation system lies in its ability to incorporate user feedback and adapt to evolving preferences over time.

# **FUTURE SCOPE**

There are numerous possibilities for the future development of food recommendation systems due to the continuous advancements in technology and data analysis. These systems have the potential to personalize recommendations based on factors such as activity level, sleep patterns, and genetics. Additionally, they can be integrated with smart appliances to suggest recipes based on available ingredients and cooking equipment. Predictive analysis can also be used to anticipate users' needs, while social network integration can help gather information about their likes and dislikes. Finally, promoting sustainability can encourage environmentally conscious food choices and waste Overall, reduction. the future of recommendation systems looks promising, and it will be fascinating to witness how they evolve and enhance our food experiences.

- **Integration with Wearable Devices**: One possible way to enhance food recommendation systems is to link them with wearable devices like smartwatches. By doing so, these systems can monitor a user's dietary intake and provide personalized food suggestions that are in line with their nutritional goals.
- Augmented Reality: One possible way to enhance food recommendation systems is by incorporating augmented reality technology. This would enable users to view virtual depictions of various food items and gain a more comprehensive understanding of their constituent ingredients, nutritional content, and possible allergens.
- Voice-Activated Interfaces: As voice-activated assistants like Alexa and Google Assistant continue to gain popularity, there is potential for food recommendation systems to incorporate voice commands for convenient access to recipe suggestions and restaurant recommendations.

## **VI.REFERENCES**

- [1]Kim, M., Jang, J., & Lee, U. (2017). A collaborative filtering-based restaurant recommendation system using geographical and sentimental features. Information Sciences, 396, 142-154.
- [2]Zhang, J., Luo, H., & Wang, X. (2020). Personalized food recommendation algorithm based on deep learning. Food Control, 112, 107147.
- [3]Li, X., Li, M., Li, Q., Li, Y., & Liu, Y. (2019). A personalized food recommendation system based on mobile devices. Journal of Ambient Intelligence and Humanized Computing, 10(8), 2971-2981.
- [4]Wang, L., Su, M., & Wang, Q. (2017). A personalized food recommendation system based on hybrid collaborative filtering and deep learning. International Journal of Computer Applications, 179(18), 38-46.
- [5] Chen, Z., Li, W., Li, Y., Chen, Y., & Zhou, Y. (2019). A collaborative filtering recommendation algorithm for personalized nutrition. Future Generation Computer Systems, 97, 450-458.
- [6] Dharshini, S., Arumugam, S., & Krishnan, S. (2021). A personalized food recommendation system for dietary management. Journal of Ambient Intelligence and Humanized Computing, 12(9), 9469-9482.
- [7] Zhang, L., Zhang, Y., & Zhang, Q. (2019). A food recommendation system based on user preferences and nutritional values. Journal of Ambient Intelligence and Humanized Computing, 10(10), 3841-3852.

- [8] Ekmekcioglu, E., Schwingshackl, L., & Böhm, A. (2019). A deep learning approach to personalized food recommendations for type 2 diabetes patients. Nutrients, 11(8), 1736.
- [9] Zhang, M., Wu, Y., & Chen, Y. (2020). A review of food recommendation systems and their potential in promoting healthy eating. Artificial Intelligence Review, 53(5), 3129-3156.
- [10] Yeh, C. L., Huang, Y. C., & Wang, Y. (2019). A user-centric food recommendation system using a personalized model. Journal of Ambient Intelligence and Humanized Computing, 10(8), 3143-3157.
- [11] Wu, C. Y., Tsai, Y. T., Lin, C. H., & Lee, Y. L. (2020). A personalized meal recommendation system for diabetic patients. Journal of Medical Systems, 44(4), 70.
- [12] Sanguansat, P., Leong, T. Y., & Leong, C. W. (2021). Food recommendation system based on dietary habits and health conditions. Computers, Materials & Continua, 66(2), 1907-1922.
- [13] Kang, H. Y., Kim, M., & Lee, U. (2020). A hybrid food recommendation system using food ontology and user preferences. Information Sciences, 528, 70-80.
- [14] Li, Q., Zhang, L., & Wu, C. (2021). A comparative study of different recommendation algorithms for personalized nutrition. Frontiers in Public Health, 9, 740486.
- [15] Shu, Q., Chen, W., Li, Y., Luo, Y., & Xiong, L. (2020). A dietary intake monitoring and personalized recommendation system for diabetes management. Journal of Medical Systems, 44(10), 205.
- [16] Kim, J. H., Park, J. H., & Kim, D. W. (2021). Personalized food recommendation system for individuals with metabolic syndrome. Journal of Personalized Medicine, 11(2), 96.
- [17] Park, J., Kim, D., & Kim, J. (2019). Designing a personalized food recommendation system for elderly people. International Journal of Environmental Research and Public Health, 16(15), 2809.
- [18] Yu, J. J., Moon, J. S., & Kim, S. J. (2021). An intelligent food recommendation system based on user dietary preferences and mood. International Journal of Environmental Research and Public Health, 18(11), 6052.

- [19] Lee, K. W., Kwon, K. H., & Kim, Y. J. (2019). Food recommendation system based on ingredient compatibility and nutritional balance. Journal of Food Science and Technology, 56(12), 5428-5436.
- [20] Chen, H., Xue, H., Huang, L., Liu, Y., & Li, Y. (2021). A novel personalized recipe recommendation algorithm based on user nutrition goals and ingredient substitution. Journal of Food Science, 86(3), 759-768.
- [21] Cho, Y., Kim, M., & Lee, U. (2020). A hybrid food recommendation system for personalized meal planning. Journal of Intelligent Information Systems, 54(1), 87-102.
- [22] Zheng, J., Gao, F., Guo, L., & Zhang, J. (2021). A personalized food recommendation system based on a multi-dimensional model. Personal and Ubiquitous Computing, 25(2), 235-249.
- [23] Park, J. H., Kim, J. H., & Kim, D. W. (2019). A personalized food recommendation system for diabetic patients based on nutrition balance. Journal of Healthcare Engineering, 2019, 1-12.
- [24] Jeong, J., Lee, S., & Lee, S. (2019). A recipe recommendation system for food preferences based on ingredient co-occurrence analysis. Computers in Industry, 108, 152-162.