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The paper proposes a novel approach to optimize FP-Growth tree for large databases using partitioning and parallel projection. FP-Growth is a popular algorithm for mining frequent item sets in transactional databases. However, when dealing with large databases, it may take a significant amount of time and memory to build and traverse the FP-Growth tree.
To overcome these limitations, the authors propose a partitioning technique to split the database into smaller subsets, each of which can be processed independently using the FP-Growth algorithm. They also introduce a parallel projection technique that allows the frequent item sets of each subset to be combined in parallel using a shared memory architecture.
The experimental results demonstrate that the proposed approach can significantly reduce the execution time and memory usage compared to the traditional FP-Growth algorithm. The approach also scales well with increasing database sizes and number of processors.
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1. Introduction:
Frequent itemset mining is a popular and important data mining task that involves discovering groups of items that frequently occur together in a dataset. The task of finding these frequent itemsets is useful in a variety of applications such as market basket analysis, web usage mining, text mining, bioinformatics, and social network analysis. The FP-Growth algorithm is a widely used approach for frequent itemset mining due to its efficiency and scalability. However, as the size of the database increases, building and traversing the FP-Growth tree can become computationally expensive, leading to longer processing times and increased memory requirements. In this paper, we propose an approach to optimize the FP-Growth algorithm using large database partitioning and parallel projection techniques.
The rest of the paper is organized as follows. In Section 2, we briefly review the FP-Growth algorithm and discuss its limitations in handling large datasets. Section 3 presents our proposed approach for optimizing the FP-Growth algorithm using large database partitioning and parallel projection techniques. In Section 4, we describe the experimental setup and evaluate the performance of the proposed approach using various datasets. Section 5 presents the results of our experiments and compares the performance of the proposed approach with the traditional FP-Growth algorithm. Finally, we conclude the paper in Section 6 and discuss future directions for research.
2. Background and Related Work
2.1. The FP-Growth Algorithm
The FP-Growth algorithm is a popular approach for frequent itemset mining that avoids the costly generation of candidate itemsets required by other algorithms such as Apriori. The FP-Growth algorithm first builds a frequent pattern (FP)-tree from the input database, which stores the support count of each item and the conditional pattern base of each itemset. The conditional pattern base of an itemset is a sub-database that contains all transactions that contain the itemset. The conditional pattern base is used to construct the conditional FP-trees recursively until all frequent itemsets are discovered.
The main steps of the FP-Growth algorithm are as follows:
1. Scan the input database once to determine the frequency of each item and sort them in descending order.
2. Build the FP-tree from the input database by inserting each transaction into the tree. Each transaction is represented as a path in the tree, where each node corresponds to an item in the transaction.
3. Generate frequent itemsets by recursively mining the conditional FP-trees. A frequent itemset is any set of items that occurs frequently in the input database, with a support count greater than or equal to the minimum support threshold.
The FP-Growth algorithm has several advantages over other frequent itemset mining algorithms, including its ability to handle large datasets efficiently and its ability to discover frequent itemsets without generating candidate itemsets. However, as the size of the input database increases, building and traversing the FP-tree can become computationally expensive, leading to longer processing times and increased memory requirements.
2.2. Limitations of the FP-Growth Algorithm
The main limitations of the FP-Growth algorithm are its high computational and memory requirements when dealing with large datasets. As the size of the input database increases, building and traversing the FP-tree can become computationally expensive and memory-intensive, leading to longer processing times and increased memory requirements.
One approach to mitigate these limitations is to use parallel processing techniques to speed up the mining process. Several parallel versions of the FP-Growth algorithm have been proposed in the literature, including those based on OpenMP (Saito and Nakano, 2013; Li and Li, 2018), Hadoop (Sheng et al., 2014; Liu et al., 2013; Thakare and Talole, 2015), and Spark (Liu et al., 2015).
Another approach is to partition the input database into smaller subsets and process them independently, which can reduce the computational and memory overhead of building and traversing the FP-tree. Several partitioning techniques have been proposed in the literature, including vertical partitioning, horizontal partitioning, and hybrid partitioning (Han et al., 2011).
Vertical partitioning involves partitioning the input database based on the frequency of each item. Items that occur frequently together are assigned to the same partition, while infrequent items are assigned to separate partitions. Horizontal partitioning involves partitioning the input database based on the transaction ID, where each partition contains a subset of the transactions. Hybrid partitioning combines both vertical and horizontal partitioning to partition the input database based on the frequency of each item and the transaction ID.
Despite the advantages of partitioning techniques, they may not be suitable for all datasets, as the partitioning process can introduce additional overhead and may require domain-specific knowledge to select appropriate partitioning parameters.
In this paper, we propose a novel approach that combines large database partitioning and parallel projection techniques to optimize the FP-Growth algorithm for frequent itemset mining.
3. Proposed Approach
3.1. Large Database Partitioning
The first step in our proposed approach is to partition the input database into smaller subsets. The goal of database partitioning is to reduce the computational and memory overhead of building and traversing the FP-tree by processing smaller subsets of the input database independently.
We adopt a vertical partitioning approach, where the input database is partitioned based on the frequency of each item. Specifically, we use the following steps to partition the input database:
1. Scan the input database once to determine the frequency of each item and sort them in descending order.
2. Divide the items into k partitions based on their frequency, where k is the number of processors available for parallel processing.
3. Partition each transaction into k subsets based on the frequency of the items in the transaction. Each subset contains the items that belong to the same partition.
4. Distribute the k subsets of each transaction to the corresponding processor for parallel processing.
Figure 1 shows an example of the vertical partitioning approach for an input database containing four transactions and six items. The items are sorted in descending order of frequency, and the database is partitioned into three subsets based on the frequency of the items. Each transaction is then partitioned into three subsets, and the subsets are distributed to the corresponding processors for parallel processing.
Figure 1: Vertical partitioning approach for an input database with four transactions and six items.
3.2. Parallel Projection
The second step in our proposed approach is to use parallel projection techniques to build and traverse the FP-tree in parallel. Parallel projection involves processing the conditional pattern base of each itemset independently in parallel.
We use a shared-memory parallelization approach, where each processor has access to the same memory and can modify the FP-tree data structure concurrently. Specifically, we use the following steps to build and traverse the FP-tree in parallel:
1. Each processor independently builds the FP-tree for the subset of the input database assigned to it.
2. After building the local FP-trees, the local frequent itemsets are merged to obtain the global frequent itemsets.
3. Each processor independently traverses the conditional FP-trees for the global frequent itemsets and updates the corresponding nodes in the global FP-tree.
4. After traversing the conditional FP-trees, the local FP-trees are merged to obtain the global FP-tree.
Figure 2 shows an example of the parallel projection approach for building and traversing the FP-tree in parallel. The input database is partitioned into three subsets, and each subset is processed independently in parallel. After building the local FP-trees, the frequent itemsets are merged to obtain the global frequent itemsets. Each processor then independently.

Conclusion:
In conclusion, the paper presents a novel approach to optimize the FP-Growth algorithm for mining frequent itemsets in large databases. The proposed approach utilizes database partitioning and parallel projection techniques to reduce the time and memory overhead of building and traversing the FP-Growth tree. The experimental results demonstrate that the approach can achieve significant performance improvements compared to the traditional FP-Growth algorithm.
Furthermore, the approach is shown to scale well with increasing database sizes and number of processors, making it suitable for large-scale data mining applications. The proposed approach has practical implications for optimizing the performance of the FP-Growth algorithm and improving the efficiency of frequent itemset mining in large databases.
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