2019 IEEE 13th International Conference on Semantic Computing (ICSC)

NodeJS and Angular Tools for JSON-LD

Aaron Sterling
Department of Computer Science
Iowa State University
Ames, Iowa, USA
sterling@iastate.edu

Abstract—We report on three open-source, ISC-licensed tools
that improve the experience of web programmers who use
jsonld.js, the official JSON-LD JavaScript library. Two of these
tools are for NodeJS, which is primarily a backend framework,
with which one can manage servers using JavaScript. The NodeJS
tools are: jldc, a NodeJS command line tool; and node-jsonld,
a module that can be plugged into other programs. The two
NodeJS tools are written in Typescript 3 and transpiled to
JavaScript ES2015. The third tool is written in and for the
web framework Angular, which is primarily used in frontend
development. The Angular tool is ngx-jsonld-provider. All three
tools extend jsonld.js with better error trapping, more verbose
help messages, and greater type safety. All three tools are
registered with the Node Package Manager (npm). At the time
of this writing, web developers have downloaded them from npm
more than 500 times combined.

I. INTRODUCTION

This paper reports on three open-source tools that extend
the official JSON-LD JavaScript software library, so that more
typesafe, better documented JSON-LD operations are available
to both frontend and backend web developers.

A significant challenge for web programmers is to en-
sure data can be correctly understood across many different
platforms. For example, are different databases using terms
like “name” or “employee” in the same way—and, if not,
how best to translate between them? One solution to this
problem is Linked Data, which provides context to a term
like “name” by attaching to “name” a web address that points
to a formal definition of “name,” so the term’s meaning is
unambiguous [1]. JSON-LD is a W3C standard that allows
developers to attach linked data to JSON objects [2]. (JSON
is a data-interchange format that is often used in web program-
ming [3].) The JSON-LD specification provides algorithms for
several operations on JSON data with respect to a linked-
data context. There are official software libraries for these
algorithms available in several programming languages [4],
including JavaScript [5]. However, this JavaScript library is
written in “common” JavaScript, and does not take advantage
of powerful libraries and techniques that have recently become
available.

Over the last five years, the open-source community has
put in a tremendous amount of effort to make JavaScript a
safer, more mature language. Two open-source projects in
that effort are Typescript and Inversify. Typescript, backed
by Microsoft, adds static types to JavaScript [6]. Typescript
is now extremely popular among web developers, because
type checking helps push runtime errors back to compile

time, and makes maintaining large projects easier. Inversify
is less-known than Typescript, but used by many companies
with large-scale Javascript projects [7]. Perhaps Inversify’s
greatest strength is that it provides Javascript and Typescript
programmers with a mechanism for Inversion of Control [8, 9].
Inversion of Control has become a popular design principle in
web programming, in part because it focuses on the impor-
tance of contracts between modules, without having to know
anything about the inner workings of a module.

The two tools written with Typescript and Inversify are
interfaces between jsonld.js and the popular server manage-
ment software NodelJS [10]. NodelS, written in C++, takes
the same Javascript engine that appears in Google’s Chrome
browser, and runs independent of the ability to render visual
content (for example, no HTML). NodeJS is often used as
the backend part of a full stack, because developers can use
the same language for the backend (Javascript/Typescript)
as they do for the frontend, and because queries to servers
managed by NodeJS are nonblocking. Therefore, two of the
tools we present in this paper are intended to be consumed by a
popular backend technology. The third is written for Angular,
a frontend Javascript framework.

The web development framework Angular [11], backed by
Google, was originally written in an extension of Javascript,
AtScript, but Microsoft and Google agreed to collaborate,
and extended an earlier version of Typescript so “modern”
Typescript subsumes AtScript. Angular makes it easy for pro-
grammers to use dependency injection, an aspect of Inversion
of Control. The third tool we present in this paper is an
interface between Angular and jsonld.js.

We present the following tools in the next section: jldc!,
a NodeJS command line interface for JSON-LD operations
on files; node-jsonld?, a Javascript ES6 module whose code
is related to that of jldc, which lets NodelJS programmers
perform JSON-LD operations programmatically; and ngx-
jsonld-provider®, an Angular provider that functions as a
typed interface to the JSON-LD library. All three tools we
present in this paper are strongly typed (through Typescript 3,
the most recent version), and written consistent with Inversion
of Control principles (using either Inversify or Angular’s

I'Source code and documentation for jldc is available at https:/github.com/
Aaron-Sterling/jldc

2Source code and documentation for node-jsonld is available at https://
github.com/Aaron-Sterling/node- jsonld

3Source code and documentation for ngx-jsonld-provider is available at
https://github.com/Aaron- Sterling/ngx-jsonld-provider

978-1-5386-6783-5/19/$31.00 ©2019 IEEE

392 IEEE
DOI 10.1109/1CSC.2019.00077 computer

soclety

dependency injection). We believe that this adds important
scaling and safety features to jsonld.js. All three are open-
source, and their source code can be cloned from Github repos-
itories. All are ISC-licensed, so they are free to use for any
purpose. Finally, all three tools are packages registered with
Node Package Manager (npm—a popular library download
service), and, combined, have been downloaded hundreds of
times.

II. THE TOOLS

A. jldc: NodelS command line interface

The original JSON-LD operations of jsonld.js accept urls
that point to locations on the web for, e.g., a JSON-LD
source and a context in order to run the compact algorithm on
the source. The first two tools we consider—jldc and node-
jsonld—extend the functionality of those operations with the
file system library of NodeJS, so JSON-LD operations can be
performed on resources read from, and written to, a local disk.

jldc is a NodelS command line interface for jsonld.js.
An official NodeJS command line interface for jsonld.js al-
ready exists: jsonld-cli [12]. However, jsonld-cli was written
in common Javascript three years ago, before libraries like
Inversify (or mature Typescript) were available. Further, the
user interface of jsonld-cli is extremely simple; for example,
it does not ask for confirmation before overwriting an existing
file.

With jlde, we built a command line interface (CLI) that has
verbose messages that explain the tasks being performed, any
errors encountered, and an interactive confirmation process
that requires the user to say “yes” before any existing file
is overwritten. (jsonld-cli has none of these features.) The
core of jldc is built with jsonld.js and the CLI library Com-
mander.js [13]. The jldc interface is built using the libraries
chalk (which provides colored and formatted text) [14], and
Inquirerjs (which handles asking the user to confirm overwrite
steps) [15].

As one example, the command to run the JSON-LD compact
algorithm is

jldc compact sourceFile. json

contextFile.json targetFile. json

This command returns distinct errors if the source file or
context file do not exist, and will commence a confirmation
dialog if the target file does exist. If there are no errors,
and all user confirmations receive a “yes” response, then
jlde will execute the compact algorithm on the contents of
sourceFile.json, consistent with the contents of context.json,
and write the result to targetFile.json.

As mentioned in the Introduction, jldc is built with Inversify
and Typescript 3. Therefore, jldc not only provides a richer
user experience than was previously available with jsonld-cli,
but also, under the hood, better follows web programming best
practices (type safety and Inversion of Control).

One disadvantage of jldc is that is can only be used at the
command line, not as a module within a larger program. We
have repurposed the core code of jldc to create just such a
module, which we consider next.

B. node-jsonld: NodelS plugin module

node-jsonld can be thought of as the code for jldc, with the
command line interface replaced by a Javascript ES6 module
with methods both to perform JSON-LD operations, and to
get in-depth help messages. The consuming code imports
the module nodeJsonLd, and the command to perform the
compact operation looks like:

nodedsonLd.compact (source, context,
target);

Here source, context and target are
names of files. All JSON-LD operations, including
nodeJsonLd.compact, are asynchronous calls, of

type Promise<string>. This type is a Promise from the
Javascript ES2015 spec [16]: the call eventually returns a
string, or throws an error if one occurred. The node-jsonld
API guarantees that the string will be ’ successful’ if
the JSON-LD operation was successful, or an error code if
the operation was unsuccessful. (A technical note: this aspect
of the API is an improvement over both the type of Promise
available from jsonld.js alone, which relies on a browser
polyfill and does not play well with Typescript 3; and over
the Promise API of the NodelS file system module, which is
still experimental.)

Like jldc, the code of node-jsonld is separated into injectable
modules, and then injected as needed, using Inversify. There
are two main pieces of code: the JSON-LD Operations Service,
which handles the interface to jsonld.js; and Help Message
Service, which provides extended help messages for each
JSON-LD operation that the consuming code can use as de-
sired (for example in tooltips). There is a getter for each JSON-
LD operation, such as getCompactHelpMessage () and
getFlattenHelpMessage (). These all return strings.

We now turn our attention from the backend (NodeJS) to a
JSON-LD tool for a frontend framework (Angular).

C. ngx-jsonld-provider: Angular provider

Roughly speaking, the structure of Angular permits two
kinds of code objects: components and providers. A compo-
nent contains code that renders something on the screen. A
web page is a component, for example, as are much smaller
things that might be embedded into a page, such as a button.
By contrast, a provider is a piece of code that does not render
data for the user. Providers may read data from a disk or
a database, or process information, and then convey data to
components, which are responsible for deciding what parts of
that data to render.

The previous work that is closest to ngx-jsonld-provider is
ngx-json-1d by Rylan [17]. ngx-json-ld is an Angular compo-
nent that displays results of JSON-LD operations in HTML.
While we find the project interesting, we also believe its
strategy is limited, because JSON-LD operations are inherently
data transformations, and so their natural location in Angular
is within a provider, not a component. Therefore, we have built
a JSON-LD provider, and left all rendering questions to the

consuming Angular code.
To use ngx-jsonld-provider, one registers the provider with
Angular in the core app module (a standard step with any

393

globally-scoped provider), and then calls it within a particular
component as shown in the following toy example.

import {NgxJsonLdProvider}
from 'ngx-jsonld-provider’;

const name={’http://schema.org/name’ :
"John Doe’ };
const context={'name’:
"http://schema.org/name’ };
class foo {
constructor (jsonld: NgxJsonLdProvider) {
jsonld.compact (name, context)
.then(res => console.log(res));
}
}

In an instance of Angular’s dependency injection,
NgxJsonLdProvider is injected into the constructor of
the class foo. The methods of the provider are then available
to foo. jsonld.compact calls the compact operation
of jsonld.js. Unlike the NodelS tools, jsonld.compact
returns type JsonLd, so the variable res is a JsonLd object.

The Node]S compact operation wrote the result of the
operation to a file and returned a string that reported on
the entire process, including the file reads and writes. Since
Angular is a frontend framework, the expectation is that this
code will be running in a browser, and one security feature
of modern browsers is that they do not have access to the
local file system. So the inputs to jsonld.compact are
strings or JSON, the output is of type JsonLd, and it is the
responsibility of the consuming code to determine what to do
with the operation’s output.

One advantage an Angular provider has over either a com-
mand line interface or an ES6 module that could be consumed
by many kinds of code, is the guarantee of stable storage in
between operation calls. ngx-jsonld-provider has a functional-
ity the other tools do not: the ability to reset the default options
for each JSON-LD operation. There is a getter for each oper-
ation, for example getCompactOptions (), which return
an object of type specific to the options of that operation,
such as CompactOptions, FlattenOptions, etc. The
getters report on the current value of the options object, and,
using setters like setCompactOptions (newOptions:
CompactOptions), a developer can change the default
options programmatically.

Like the other two tools, ngx-jsonld-provider gives
access to verbose help messages. These are available
through the same getters that appear in node-jsonld
(getCompactHelpMessage () etc.).

III. CONCLUSION

We created these tools because we were trying to build
mobile apps that used computational ontologies, and we found
that the most robust tools for ontology manipulation, like the
OWL API [18], were very desktop-centric—written in Java
without web-friendly interfaces. (Even WebProtege [19], a
web portal to a well known ontology editor, is dedicated to one
user using one online tool, instead of distributed programming
or other characteristics of web computing.) JSON-LD is a
file format that is sometimes used for ontologies, and we

believe it is a good fit for web manipulation of ontologies,
because a principal motivation for the design of JSON-LD
was to improve web APIs. Therefore, we designed backend
and frontend JSON-LD tools for our own use, and we believe
we stumbled onto a general community interest, because jldc
alone was downloaded over 300 times in the week after it was
published to npm. We hope our work inspires the open source
community to build more web tools for JSON-LD, and for
computational ontologies.

REFERENCES

[1] T. Berners-Lee, “Linked data,” https://www.w3.org/
Designlssues/LinkedData.html, July 2006, accessed 27
September 2018.

[2] M. Sporny, G. Kellogg, M. Lanthaler et al., “JSON-
LD 1.0: A JSON-based serialization for linked data,”
https://www.w3.org/TR/json-1d/, January 2014, accessed
27 September 2018.

[3] “Introducing JSON,” https://www.json.org/, December
1999, accessed 27 September 2018.

[4] “JSON for linking data,” https://json-1d.org/, accessed 27
September 2018.

[5] “jsonld.js,” https://github.com/digitalbazaar/jsonld.js/, ac-
cessed 27 Septenber 2018.

[6] “Typescript: Javascript

/Iwww.typescriptlang.org/,

28 September 2018.

“Inversify]S,” http://inversify.io/, accessed 28 September

2018.

[8] M. Mattsson, “Object oriented frameworks, a survey of
methodoligical issues,” Master’s thesis, Blekinge Institute
of Technology, February 1996.

[9] S. Mazzocchi, “On Inversion of Control,”

https://web.archive.org/web/20040202120126/http:

/Iwww.betaversion.org/~stefano/linotype/news/38/,

January 2004, accessed 28 September 2018.

“NodelS,” https://nodejs.org, accessed 30 September

2018.

“Angular,” https://angular.io/, September 2016, accessed

28 September 2018.

D. Lehn, “jsonld-cli,” https://github.com/digitalbazaar/

jsonld-cli, September 2015, accessed 30 September 2018.

that
October

scales,”
2012,

https:
accessed

[7

—

[10]
[11]

(12]

[13] “Commander.js,” https://github.com/tj/commander.js, ac-
cessed 30 September 2018.

[14] “chalk,” https://github.com/chalk/chalk, accessed 30
September 2018.

[15] “Inquirer.js,” https://github.com/SBoudrias/Inquirer.js/,
accessed 30 September 2018.

[16] “ECMAScript 2015: Promise objects,”
https://www.ecma-international.org/ecma-262/6.0/
#sec-promise-objects, accessed 30 September 2018.

[17] C. Rylan, “ngx-json-1d,” https://github.com/coryrylan/

ngx-json-1d, March 2018, accessed 30 September 2018.
M. Horridge and S. Bechhofer, “The OWL APL: A
Java API for OWL ontologies,” Semantic Web Journal:
Special Issue on Semantic Web Tools and Systems, vol. 2,
no. 1, pp. 11-21, 2011.

(18]

394

[19] T. Tudorache, C. Nyulas, N. F. Noy, and M. A. Musen,
“WebProtégé: A collaborative ontology editor and knowl-
edge acquisition tool for the web,” Semantic Web, vol. 4,
no. 1, pp. 88-99, 2013.

395

