THE ART OF SORTING: A VISUAL GUIDE
(ALGORITHM VISUALIZER IMPLEMENTATION HTML, CSS AND JAVASCRIPT)
Amit Singh1, Atul Kumar Singh1, Abhishek Singh1,
Anmol Pandey2, Subhash Chandra Maurya
Department of Computer Science and Engineering, 1Maharana Pratap Engineering College, Kanpur, UP, India & 2Maharana Institute of Professional Studies, Kanpur, Uttar Pradesh, India
anmol937016@gmail.com2
amitsingh.cs46@gmail.com1
foratulsingh6@gmail.com1
as.rajput042000@gmail.com1
subhashchandra@mpgi.edu.in1

 ABSTRACT
This paper outlines a study that tested the benefits of animated sorting algorithms for teaching. To visualize four sorting algorithms, a web-based animation application was constructed. A visualization of data is implemented as a bar graph, after which a data sorting and algorithm may be applied. The resulting animation is then performed either automatically or by the user, who then sets their own pace. This is a research on the computer science curriculum's approach to learning algorithms. The experiment featured a presentation and a survey, both of which asked students questions which may illustrate improvements in algorithm comprehension. These findings and reactions are catalogued in this document and compared to earlier investigations.

Keywords: Sorting Algorithms, React Visualizer, Selection Sort, Merge Sort, Bubble Sort, Insertion Sort, Heap Sort.
 INTRODUCTION
How do you get something done? You don't have to be extremely complex in solving the problem, for example, if your car's headlight is broken (although nowadays, manufacturers are trying the patience of the community with their increasingly abstract, space-age designs). The main issue is figuring out the best way to go about it. To locate step-by-step directions in your car's handbook, you conduct research, or do you use instinct to find someone who knows how to do it? In short, my instinct tells me that I am a visual learner and hence more suited to acquire topics by watching them than by reading about them. In this case, I found that seeing the data move to its rightful spot as the result of an algorithm is MUCH easier to follow than looking at the source code and trying to figure out where the data was supposed to go. My project was born out of my curiosity about sorting algorithms, which inspired the idea for this paper, which details an online tool I built that explains how sorting algorithms transform and organize sets of data. It is possible to organize a list of people, for example, by their age in ascending order using different methods. To aid my visualization, I created a histogram of numerical data to represent four of the well-known examples. Each number is depicted as a bar, and the height of each bar represents the value of that number. It is being shifted by the algorithm from its original, unordered location to its final ordered place, making it distinct from the rest of the data. Selection Sort, Bubble Sort, Insertion Sort, and Merge Sort are the four sorting algorithms. 2 Let's imagine that you have printed each person's age on a separate index card. Bring the youngest card to the front and then sort the cards by age. To discover the next smallest item, identify the age that has already been ordered and position it behind the already ordered age. Index cards full of ages will be at the end of the pile. Selection Sort works in the same way as this. In this case, to sort a set of data, you select the smallest first, and then the next smallest, and so on until you've sorted all of the data. This technique is quite simple to explain to someone in conversation, but more advanced sorting algorithms, such as Quick Sort, which requires the data to be moved around a pivot point, are not easy to grasp using text alone. I wanted the animation to appeal to a wide spectrum of individuals utilizing various technology media, and so I had it made in a web-based format. Instead of requiring the user to install extra software or attempt to organize setups to use the tool, this helps to remove this source of anxiety. It uses HTML5 (Hypertext Markup Text Language) JavaScript, and CSS for the website's layout (Cascading Style Sheets).

 DESIGN

a) The User Interface
The design and structure of the user interface components has remained unchanged even if the underlying back-end code was refactored midway through the construction. Each component has its own feature: The canvas has twelve features; 10 control buttons, and a volume toggle button. The canvas area is where the four
Four sorting algorithms are visualized, and that area will be the location where the sorting algorithms' output is edited in. The first row of four blue-bordered buttons at the bottom of the canvas are the selectable algorithms: Selection Sort, Bubble Sort, Insertion Sort, and Merge/Insertion Sort. This type of visualization is offered to users to select an algorithm of their choice, and to observe how that algorithm functions. Before launching the animation, the user will need to select an algorithm. The sorting algorithm must be selected before the input data type is specified. To choose between sorting input data that is already in order or to reverse and randomize the order, the three gray-bordered buttons on the left of the bottom row are Sorted order is the default. The sorting algorithm is picked once the input and sorting method have been selected. Following, the “Start” button in the next row of buttons is clicked to perform the sort from the beginning to the end. The user can click the yellow-orange-bordered “Step” button to watch the algorithm step-by-step. Once the process is already underway, you can simply stop it by pressing the “Stop” button. In order to reduce misunderstanding in user- friendliness, I've tried to make the interface basic and placed buttons related to one another for easy access. The algorithm buttons are on separate tiers and have a blue coloration associated with them. Additional buttons are arranged in a grouped fashion, with a gray background. The "oddballs" are the animation controls. Despite being grouped togethe each controller has a distinct color to denote the kind of animation it does. The colors are modeled on a traffic light with green being the go signal, red being the stop signal, and yellow being the signal to slow down (or in this case, yellow orange means pace yourself). Additionally, each button also provides visual feedback to the user by changing color as the cursor hovers over it. The volume toggle button is the final function that is available on the Web page. The button appears to the left of a speaker picture on the lower left-hand side of the web page. While conducting some study on sound effects for animations, I realized the tool could be more participatory by both hearing and seeing the animation, rather than merely observing. To determine the sound each bar makes, use the following rule: each bar has a sound allocated to it based on its height. To hear four octaves on a piano, from low to high, the bars need to be in order. With the sound enabled, each bar in the sound animation plays a different tone from left to right when it appears. You'll only be able to hear the full four octaves in order if the bars are out of order. The bar's presently being played color will change to green, and then, when the sound animation is finished, it will change back to blue. However, because the animation is hungry with memory, the animation may stop momentarily and then resume. This means that the sound animation is turned off by default, but the user has the option to toggle it. You'll get the best results if you use the sound animation with Selection Sort.
[image:]
 (b) System Architecture
HTML5, CSS, and JavaScript make up the back-end code. There are three varieties of code in one .html file and all three can be executed from this file alone. Including different types of web languages in a single page is one of the shortcomings of HTML 5. Since, therefore, there were three different types, each had been segregated, producing three different files (plus the miscellaneous sound and image files). Readability and keeping relevant code together are benefits of excellent programming practices. However, in the end, I opted not to break the code into two separate sections because of these two reasons. By just having to worry about one project file instead of three, the project may be more easily transported and sent. And because the changes to the coding languages are identified unambiguously in the project file, they do not reduce readability. An RIA can have more than one programming language in a single file (Rich Internet Application).
As you can see, the three coding languages are the only important components. However, since JavaScript runs immediately in the browser, it is unnecessary to employ a server on the back-end (like PHP). HTML5 and CSS are employed in web development. As illustrated with a single, bidirectional arrow, the HTML5 and JavaScript communicate to run the relevant algorithms and update the interface. The code for HTML5 and CSS did not change significantly throughout the project. The parts of HTML5 that were updated were the function calls for each button, since they were altered from a functional programming mindset to an object-oriented one. We've abstracted away all of the back-end code behind all of the different algorithms and animation selectors.

 Algorithms
a) Bubble Sort - Bubble Sort is based on the idea of exchanging two adjacent elements if they have the wrong order. The algorithm works stepping through all elements from left to right, so the largest elements tend to move or "bubble" to the right. That is why the algorithm is called Bubble Sort. Now we are going to the details. Let us have an unsorted array. The algorithm does iterations through the unsorted part which is the whole array at the beginning. And with each iteration through the array the range of inspected items is decreased by one till only two elements left. After this two elements are compared and possibly swapped, the array is considered as sorted. Bubble Sort complexity is Θ(n2).

b) Selection Sort - Selection Sort algorithm is based on the repeated selection. Here we consider finding minimal key from the unsorted part and swapping it with the first unsorted key. As well as in the Insertion Sort, sorted part grows from the beginning of the sequence. Assume an array of items to sort. At the beginning of the sorting process unsorted part is represented by the whole array. Then, the first item of the unsorted part is set as the smallest item and is compared with the follow-up elements. When smaller item is found, it is set as a new smallest key. After the end of the array is reached the smallest item is swapped with the first element of the unsorted part and it becomes the sorted part of the array. This step is repeated till the array is sorted. Complexity of this sorting algorithm is Θ(n 2).

c) Insertion Sort - Insertion Sort algorithm has a simple idea. Assume an array with items to be sorted. We divide the array into two parts: sorted one and unsorted one. At the beginning sorted part consists of the first element . Then, for each item that we have in the unsorted part, we take element and insert it into the right place among the sorted items.
 In order to insert element into the right place in the sorted part, we compare selected item from the unsorted part with each item from the sorted part in the direction from right to left. Comparing continues until smaller or equal element is found or no elements to compare left. After each comparison, if current item in the sorted part is greater, we move that current item one position right. Finally, when the right position is found, we insert an item into the sorted part. Complexity of Insertion Sort is Θ(n2).

d) Merge Sort - Merge Sort as well as Quick Sort is an algorithm of type "divide and conquer". Its logic is simple: divide data into two parts, sort the left part, sort the right part, then "merge" the parts back.
The algorithm works by the recursive application itself on the unsorted parts. In the beginning, it selects the middle item, which becomes the rightmost element of the left part. Then, it recursively sorts both parts. Finally, the algorithm "merges" two sorted parts. Merging procedure itself takes items from each of two sorted parts one by one, compares them and moves the smallest to the output, repeats the previous step. Merge Sort complexity is Θ(n log n).

e) Quick Sort - Quick Sort works on the principle "divide and conquer". It recursively applies itself on smaller parts of array until it is not sorted. Algorithm takes one item at unsorted array or its part, usually it is the leftmost or the rightmost element of array. Then this item, also known as pivot, is moved to its final position in the array that is should occupy. While determining pivot’s position, other elements of array are rearranged the way that no bigger elements are on the right and no smaller elements are on the left. This way, it is enough to apply Quick Sort on each part of array not including pivot until array is not sorted. There are several methods of partitioning of array into two parts, here I want to describe one that is demonstrated in the software part of this work.
Firstly, a pivot and index item are selected on the unsorted array or its part. Assume pivot is the rightmost item and index is the leftmost. Next, each item of the array except pivot is compared with the pivot. If a current item is less or equal to the pivot, it is swapped with the index item, next in order item becomes an index. Finally, index and pivot are swapped and this way pivot is on its final position.
Quick Sort is counted as an effective algorithm because its average complexity is Θ(n log n). However, when array is maximally unbalanced it may show worst performance. Worst case complexity is Θ(n2).

f) Heap Sort - Heap Sort is a selection based algorithm and it offers another interesting approach to sorting. In comparison with the Selection Sort it has optimized selection by using binary heap data structure. Binary heap is a complete binary tree; it means that all levels of tree, except the last one, must be completely filled with nodes. Also, this data structure satisfies the heap condition: each node key is greater than or equal to its child keys (this heap type is called max-heap).
Binary heap may be implemented by simple array. Item at position zero is a root node, items at position one and two are respectively left and right children of the root. From that representation it is easy to find children of each node (if they exist). Assume a node at position k then its left child is at 2k + 1 and its right child is at 2k + 2 .
Heap Sort itself works as follows:
1. Build max-heap
2. Swap root and the last node, reduce size of heap by one
3. Build max-heap without the nodes on reduced positions
4. Repeat steps 2 and 3 until the range of array is one
To build max-heap from current node we need to assure that right and left children comprise max-heaps. This way, in the first step procedure for building max-heap is recursively applied for each node that has at least one child from bottom to top. After each swap of the root node and the node at last considered position, the last node takes its final place. This way it joins the sorted part of an array. Worst and average case complexity of Heap Sort are both Θ(n log(n)).

 IMPLEMENTATION
The use of HTML5 (Hypertext Markup Language 5), JavaScript, and CSS combine to form this project's implementation (Cascading Style Sheets). There is only one project file which is an HTML file and contains the code. The only additional piece of code added to the main HTML file is the .m4a sound files to support the sound animation functionality (which are saved as .m4a files). As of now, I only did extensive testing using the Mozilla Firefox browser, and it's the browser of choice in this context. However, tests done quickly revealed the possibility of Google Chrome and Safari integration.
This software uses both object-oriented and functional programming paradigms in how it organizes the code. Before the final phase of development, the design was almost completely functional, where only three objects were used: one to control the canvas that displayed the animation, another to represent a piece of data, or “bar” object (blue rectangle with dynamically changing height and position), and a final one to represent the positions that each bar moved to, or “pos” objects. Although this incorporated several function calls, some instance variables and Boolean values were utilized to keep track of the algorithm picked and when to animation, but this led to a greatly integrated mass of code that was difficult to maintain. Several big refactoring later, the code has now taken on the form of a Model-View-Controller Architecture. Although, because of its functional character, it possesses a multitude of individualized functions that alter the instance variables and Boolean values, which means it has a multitude of functions that directly alter the View and Controller. The major module in the HTML code between the <script> and </script> tags is known as the global scope. Everything within the framework is able to access the aforementioned variables and methods.

 a) The View
There are three items on the view: the sortArea, the bar, and the position. These objects operate within the container defined by the <script> and </script> tags in the .html file. This function's space is sometimes referred to as the "main" function, the first function invoked in a program.
It is the sortArea that keeps the bars up to date using a timer, while at the same time generating the bar graph. As a result, whenever "Step" is invoked, the bar values are updated depending on the steps array (discussed later). In the sortArea, after every second iteration of the timer, the rectangles will be redrawn with varied heights that represent the new values. The bars change sixty times per second, so when the “Step” button is selected, the change is instantaneous. In the sortArea, the bar object represents each piece of data. The statement encompasses all of the aspects of color, value, location, height, and sound. While having a distinct array named bars for the current bars in the bar graph helps preserve attributes such as the total number of bars (total value) independent of other characteristics, it is simple to update any or all of the attributes by iterating over the array as necessary.
b) The Model
The model is made up of one item, known as the sorter. This object houses the algorithm's code divided into methods. Start method centralizes on an integer constant and uses it to order the algorithm's possible algorithms. This object is directly controlled by the four sorting algorithms shown on the user interface as "Selection Sort, Bubble Sort, Insertion Sort, and Merge/Insertion Sort." The sort algorithm method is invoked as the user selects a sorting technique and clicks on one of the sort algorithm buttons. Then, when the algorithm sorts the data, a trace is created. The steps array, which contains all the movements in the animation, is a two- dimensional integer array that is available to methods on the web user interface. A typical back-end code interface is implemented using the steps array. The “Start,” “Stop,” and “Step” buttons function as controllers for which sub-array will be displayed on the canvas, after the computational back-end has completed the tracing. If this loads before the user has selected "Start" or "Step", then this represents a user action.

c) The Controller
Every web page on the web has at least one Controller. The buttons have been programmed in HTML and lead the browser to execute a JavaScript procedure upon clicking. The CSS is used for making the buttons look attractive, arranging them, choosing their colors, and applying visual effects. The methods alter the Model's state, prepare it for the update, and then apply the modifications to the View. Four groups of buttons are distinguished. The blue-bordered buttons at the top of the interface are the sorting algorithm buttons, and they interact directly with the sorter object. The Model calls functions as needed to construct an array of steps for animation.

 CONCLUSION AND FUTURE WORK
This web-based animation tool for viewing the following sorting algorithms functions in great part because of all the time and effort that I invested into it. In spite of its memory overhead, the feedback given to it was mostly good from the students that worked with it. This is consistent with my prior research, which revealed that there was no substantial difference in learning the content. What I do agree with totally is the attitude that holds there is a great need to investigate and produce animated presentations to enhance education in the classroom. Overall, I am not concerned that a large rework to a different language will be required soon because JavaScript is still one of the most popular web languages. We all know about my laundry list of upcoming projects, but there is one elephant in the room that still has to be addressed: resolving the memory difficulties. Following this, we would implement Merge/Insertion Sort, which takes into account the Merge Sort. Then, I would start up Quick Sort so as to finish the job because the code is ready to be integrated.
Finally, I would make the online tool available to the public, with the feature I want most, which is to make it available to the public. This might be tough as well. The application that created the animation tool knows that it's available locally, but because of concurrency, it can serve numerous requests to the web site by separate users.

 REFERENCES
[1] Visualizing Sorting Algorithms by Brian, Honors Projects Overview, Faria Rhode Island College, 2018.
[2] Sorting Algorithm Visualization by Bikram Karki Metropolia University of Applied Sciences, Bachelor of Engineering Information Technology, Bachelor’s Thesis 08 November 2021.
[3] Critical Analysis on Algorithm Visualization Study, International Journal of Computer Applications (0975 – 8887) Volume 150 – No.11, September 2018.
[4] SORTING VISUALIZER USING HTML, CSS, AND JAVASCRIPT by Datta Sai Akash Patchipulusu, Dr. A. Vijay Kumar, Department of Computer Science and Engineering FET- Jain University Bangalore, Karnataka, India, 2022.
[5] Algorithms Visualizer application Aditya1, Shipra Srivastava, Gulshan Gupta, Bilal Ibrahim, Jatin Kumar, Greater Noida Institute of Technology, 2022.
[6] SELECTION SORTING ALGORITHM VISUALIZATION USING FLASH Hadi Sutopo Department of Informatics, Universitas Persada Indonesia YAI, Jakarta, Indonesia, 2019.
[7] Visualization of Sorting Algorithms by Mykhailo Klunko, BACHELOR THESIS, Department of Computer Science, Faculty of Science, Palacký University Olomouc, 2019.
[8] SORTING ALGORITHM VISUALIZER Shubham Nath, Jatin Gupta, Abhinav Gupta, Teena Verma, Computer Science And Engineering, HMRITM, New Delhi, Delhi, India, 2021.
image1.png
s}

e

Hesp sort

Spand

