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Abstract—

The Huffman encoding technique is a method of
compressing data that takes input in the form of
strings, which are typically 1 byte or 8 bits in
length, and reduces them to a much smaller size,
often just a few bits. This is accomplished by
encoding the string data as binary bits using a
Huffman encoder, which is typically implemented
using a VVLSI architecture. The encoding process
involves two key steps: frequency sorting and
Huffman coding. The frequency sorting block sorts
the strings based on their frequency, typically in
terms of ASCII values. This sorted data is then
passed to the Huffman encoder, which assigns a
variable-length code to each string based on its
frequency. The resulting encoded data is typically
much smaller than the original data, and can be
decoded back to the original data with negligible
loss of information. In this article, we propose a
modified version of the Huffman encoding
technique that encodes each byte into less than one
byte. Specifically, we take 64 bits of data,
consisting of eight string values, and sort them
based on their ASCII values. The resulting data is
then passed through a Huffman encoder to further
reduce its size. In the worst case, the encoded data
will still be 8 bits (i.e., 1 byte), but in most cases it
will be much smaller.

. INTRODUCTION

Huffman encoding is a widely used
compression technique that minimizes the amount
of input data by assigning shorter codes to
frequently occurring symbols. In order to achieve
high compression ratios, the input data must be
sorted by frequency before being passed to the

Huffman block. To address the limitations of current
devices, a high-throughput Huffman encoder VLSI
design based on the typical/canonical Huffman
encoder was proposed in this study. In this
architecture, each input symbol is treated as a
separate node in a tree, and the two lowest frequency
nodes are merged to form a new node. To optimize
memory allocation for Huffman coding, a pre-
defined code word table was suggested to reduce the
computational workload with minimal performance
degradation[10]. However, searching for Huffman
codes in the table requires many clock cycles, which
can limit the efficiency of Huffman coding. To
improve the efficiency, a novel data structure was
developed, although the properties of this data
structure  required challenging calculations,
resulting in a low clock frequency. Although a PLA
approach can achieve fast Huffman coding, it often
requires significant hardware to store the code word
table[12].
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Fig 1:- process of canonical Huffman coding

The diagram presented depicts the process of
Canonical Huffman encoding. This paper is divided
into several sections. Firstly, in Section II, an
overview of the Canonical Huffman encoder

algorithm is presented. Then, Section 11l describes



the proposed serial architecture in detail. Section IV
provides experimental results, which are compared
to other architectures. Finally, Section V provides

brief conclusions.

1. OVERVIEW OF CANONICAL
HUFFMAN ENCODING

Huffman Coding is a lossless data compression
technique that assigns a variable length prefix code
to each character in the data. The code assigned to
each character is based on its frequency in the data,
with the least frequent character getting the largest
code and the most frequent character getting the
smallest code. While encoding the data is
straightforward and efficient, decoding the bitstream
generated by this method is not very efficient. To
decode the data back to its original characters, the
decoder needs to know the encoding mechanism
used. Therefore, information about the encoding
process is passed to the decoder as a table of
characters and their corresponding codes. In regular
Huffman coding of large data, the table takes up a
lot of memory space, and if there are many unique
characters in the data, the compressed data size
increases due to the presence of the codebook. To
make the decoding process computationally
efficient while maintaining a good compression
ratio, Canonical Huffman codes were introduced. In
Canonical Huffman coding, the bit lengths of the
standard Huffman codes generated for each symbol
are used. The symbols are sorted according to their
bit lengths in non-decreasing order and then sorted
lexicographically for each bit length. The first
symbol gets a code containing all zeros and of the
same length as its original bit length. For subsequent
symbols, if a symbol has the same bit length as the
previous symbol, then the code of the previous
symbol is incremented by one and assigned to the
present symbol. Otherwise, if the symbol has a bit
length greater than that of the previous symbol, the

code of the previous symbol is incremented, zeros

are appended until the length becomes equal to the
bit length of the current symbol, and then the code
is assigned to the current symbol. This process

continues for the rest of the symbols.
I1l.  PROPOSED SYSTEM

A. Overview

The proposed design consists of three stages:
Frequency-Generation, Code-Size Computing &
Sorting, and Code-Size-Limiting, as shown in
Figure 2. To improve the encoding efficiency and
overcome the limitations of the Canonical Huffman
encoder, we propose two types of real-time
frequency-sorting architectures in the first two
stages that process the input symbol in a series
scheme. Details of these architectures are provided
in Sections I11-B and I11-C. The code-size-sorting
module generates a temporary sorted result of the
code-size data queue at each clock cycle, based on
the hardware architecture. Once the code-size
calculation process is complete, the
HUFFMANVAL results are simultaneously
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(b) Proposed architecture

Fig 3:- Timing diagram comparison between the
proposed architecture and the traditional designs.



This brief also presents an efficient VLSI
architecture for the Code-Size-Limiting stage,
which limits the bit length to enhance the encoding
speed. The last stage is based on standard
algorithms, and this brief optimizes the nesting of
the algorithms to reduce the circuit area and power
consumption effectively.

As depicted in Figure 3, the proposed architecture
reduces the required clock cycle significantly
compared to traditional Huffman encoder designs.

B. Architecture of Frequency-Generation Stage
The proposed stage consists of two parallel parts - the
frequency-statistics process and the frequency-
sorting process. It "eats” one symbol per cycle and
generates 256 sets of ordered frequencies. This can
be done almost simultaneously when the last symbol
is entered due to the insertion of only two pipeline
stages, leading to significant improvement in
throughput and reduction in encoding time. This is in
contrast to traditional designs where the sorting
module is initiated only after completion of
frequency statistics of all input symbols.
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Fig 4:- working Mechanism of Frequency-
Statistics & Sorting Stage

The operating mechanism of the Frequency-
Statistics & Sorting stage is illustrated in Fig. 4. To
optimize the performance of the sorting algorithm
and improve efficiency by reducing the clock cycle,
the sorting process is used to identify two nodes with
the minimum and sub-minimum frequencies. To
accelerate the encoding efficiency and realize the
parallel characteristics, 257 cells
(Cell_0~Cell_256) are employed to store and
update each symbol and its frequency. Cell_256
holds the symbol with the largest frequency in the
final result, Cell_255 holds the symbol with the
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second-largest frequency, and so on. Finally, Cell_0
stores the symbol with the smallest frequency, while
Cell_256 provides an inverse code point.

current Symbol &
Frequency
= the left side

current Symbol &
Frequency

- = the right side

current Symbol &

remain
unchanged

current Symbol &
Fi requency Frequency
=the left side = the New Symbol
l & Frequency

Fig 5:- Tree chat of Frequency-Statistics & Sorting
Stage

The operating steps of the Frequency-Statistics
& Sorting stage are shown in Fig. 4, which
includes the following steps:

+  Step-0: The initial stage.

e Step-1: The proposed design receives the
input symbol. For example, assuming the current
input symbol is "100," each cell's stored symbols
are compared with "100."

«  Step-2: The cell that stores the input symbol
100" will be positioned, and the corresponding
signal SYMBOL_EN[100] will be set to "1."
Additionally, the signal
Shift. EN_100~Shift EN_256 will be set to "1."
»  Step-3: The Shift EN signal that is set to
1'b1 indicates that the corresponding cell needs
updating. Meanwhile, the new frequency
FREQ_NEW, which is one more than the
original frequency, is added. Additionally,
FREQ_OUT_A in the cell that stores the symbol
100" is also increased by 1.

+  Step-4: Each selected cell in Step-3 will be
updated according to the method shown in Fig.
5.

»  Step-5: The sorted frequency and its symbol
are output. For example, Cell_255 has a
frequency of "1," and the corresponding symbol
is "100."

The updating mechanism of each cell is shown
in Fig. 5. If the Shift_EN signal is 1'b1, the
frequency and symbol of the corresponding
modules will be updated according to the



relationship between FREQ _NEW,
FREQ_RIGHT, and FREQ_0. In this way, the
values stored in Cell 0~Cell 256 can be
updated simultaneously in the same clock cycle.
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Fig. 6 shows the VLSI architecture of Sorting-
Module-1.

The Signal Generating block counts the
frequencies of the input symbols according to
Step-3 in Fig. 4, where the Symbol_Set's value
is consistent with the input symbol.
Cell_0~Cell_256 generate sorted results based
on the methods shown in Step-4 and Step-5 of
Fig. 4. The Signal Generating block and the 257
cells are triggered synchronously by the clock
and operate in parallel. Therefore, a temporary
frequency statistic and its sorted results are
obtained at each clock cycle. As a result, when
the last symbol is input, the accurate frequency
statistics and the final sorted result will be
produced simultaneously. Compared with the
traditional sequential structure of statistics
before sorting, this proposed architecture can
save many clock cycles and improve the
encoding efficiency.

C. Code-Size Computing & Sorting Stage

The primary operation of this stage is based on the
Canonical Huffman encoding algorithm, which
consists of the following steps:

1. Select the two symbols V1 and V2 with the
minimum and second minimum frequency,
respectively, and merge them into a new node.

2. Add the frequencies of V1 and V2 to create the
frequency of the new node. Also, increase the code-
sizes of V1 and V2 by one.

3. Sort the new node with other symbols and repeat
steps 1 and 2 until all symbols have code-sizes.

4. Once all symbols have code-sizes, sort them from
smallest to largest to group them.

The stage comprises three primary components -
Sorting-module-1, Code-size_sorting, and
FSM_code_size - as shown in Fig. 2. The
FSM_code_size module controls the other two
modules to work in parallel using a finite-state
machine as its core.
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Fig. 7. State transition diagram.

If the signal END_OF_DATA is set to 1'b1,
indicating that all 256 frequency sets have been
ordered by the first stage, the FSM_code_size
module will initiate the code-size calculation
process, which involves re-ordering the updated
frequency queue using Sorting module-1 and
ordering the code-size queue executed by the Code-
size_sorting module. The FSM_code_size module
uses a finite-state machine as the kernel to schedule
the other two modules operating in parallel. The
state transition diagram of the FSM_code_size is
presented in Fig. 7, where state "0" represents the
initial state, state "1" is used to find the symbols V1
and V2, states "2" and "3" are used to sum the
frequencies of V1 and V2, and states "4"-"10" are
used to calculate the code-sizes of V1 and V2,
update the new V1 and V2 simultaneously, and send
the code-size to the Code-size_sorting module.
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Fig 8:- Mechanism Of Code Size Sorting

It is important to note that the Sorting module-1 of
the Frequency-Statistics & Sorting stage is reused in
this stage to ensure that the new V1 and V2 can be
found at every clock cycle, which can significantly
reduce the area of the entire design. Additionally, in
traditional methods, the sorting of the codesize is
not started until the computation of all symbols’
codesizes have been completed, leading to
significant time waste. However, in this stage, the
computing and sorting of the codesize are performed
in parallel.

D. Code-Size-Limiting Stage

The module in question typically features three
nested layers of lookup tables, according to standard
algorithms. A VVLSI design of this module is depicted
in Figure 8(a), which includes three large hardware
blocks: CODESIZE look-up tables, BITS look-up
table, and MUX-I. Unfortunately, these blocks are
known to cause issues such as long propagation
delay, large area, and high power consumption. To



address these concerns, an optimized architecture has
been designed as shown in Figure 8(b). Firstly, the
sequential lookup table found in the standard
algorithm has been optimized for parallel lookup,
ensuring that only one lookup table is on the timing
path. Secondly, simulation tests were conducted to
identify the presence of redundant content in the BIT
table, which is not used in practice. Therefore, the
BIT size was reduced from 32*257 to 32*16, using
only valid content in the table. This, in turn, reduces
the size of the multiplexer. Many simulation
experiments have verified the method's functional
correctness, and it greatly reduces both the logic
delay and the area.

IV.  RESULTS AND DISCUSSION

The Verilog HDL was used to describe the proposed
VLSI architecture, which was then synthesized
using the Synopsys Design Compiler and the SMIC
0.18um standard CMOS cell library. The synthesis
results indicated that the proposed architecture was
able to operate at a frequency of 400 MHz. The area
of the VLSI architecture was measured at
2,008,766um2, and the power consumption was
850.84mW. In comparison, the design presented in
reference [11] had an area of 340,114pm2 and
operated at a frequency of 50 MHz.
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Fig 9:- Throughput comparison of the VLSI
architecture.

To evaluate the throughput of the proposed
Huffman encoder, reference [11] used 256 8-bit
symbols. The encoding time was 840 x 20 ns =
16800 ns. To demonstrate the performance of the
proposed encoder, 200 groups of 256 8-bit symbols
were tested. The proposed VLSI architecture took
4,952 x 2.5 ns = 12,380 ns for encoding, which was
26.30% faster than the design in reference [11].

To test the high throughput of the VVLSI architecture
further, the number of 8-bit symbols was increased
by 256 at a time, as shown in Fig. 9. When encoding
10,240 8-bit symbols, the proposed VLSI

architecture reduced the encoding time by 79.52%,
taking 17,726 x 2.5 ns = 44,315 ns. In comparison,
the design in reference [11] required 10,824 x 20 ns
= 216,480 ns.
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Fig 11:- Delay Comparison

The VLSI architecture proposed in this study was
implemented using the Synopsys Design Compiler
and described using Verilog HDL. The standard
CMOS cell library used for synthesis was SMIC
0.18um micron. Synthesis results showed that the
proposed architecture had an operating frequency of
400 MHz, an area of 2,008,766um2, and a power
consumption of 850.84mW. In comparison, the
design presented in [11] had an operating frequency
of 50 MHz and an area of 340,114um2. To test the
throughput of the proposed Huffman encoder, the
authors used 256 8-bit symbols in [11], while 200
groups of 256 8-bit symbols were used in this study.
The proposed architecture reduced the encoding
time by 26.30% and 79.52% when encoding 256 8-
bit symbols and 10,240 8-bit symbols, respectively,
in comparison with the design in [11]. The Kodak24
data set was used to evaluate the performance of the
proposed architecture. The average encoding time
for the AC coefficients of the Y channel was
537,338.4 ns for the proposed architecture and
4,264,517.5 ns for the design in [11]. The proposed
architecture reduced the encoding time by 87.40%.
When applied to 100 testing pictures downloaded
from Taobao.com with Q value of 100, the proposed
architecture improved the compression rate by
12.24% on average. The efficiency of the proposed
architecture was evaluated using a ratio, which was



calculated to be 0.653. A smaller value of this ratio
indicates better performance of the circuit designed
in this study.

V. CONCLUSION

The aim of this paper is to implement a canonical
Huffman encoder that includes a frequency sorter,
which sorts the input string in ascending order with
respect to ASCII values, and the Huffman encoder
encodes the string to bits using trees, nodes, and
leafs concepts. This proposed architecture can be
applied in various applications where data
compression is necessary, such as 1oT and many
other applications. The Frequency-Statistics process
and the sorting process operate almost in parallel in
the Frequency-Statistics & Sorting Stage, which
reduces the time consumption of the pre-scan. The
Code-Size Computing & Sorting Stage also
performs code-size computing and sorting almost in
parallel, reducing the required clock cycle
significantly. Compared with the traditional
Huffman encoder, the proposed Canonical Huffman
encoder circuit in this brief achieves improved
coding efficiency.
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