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Abstract—   
 

The Huffman encoding technique is a method of 

compressing data that takes input in the form of 

strings, which are typically 1 byte or 8 bits in 

length, and reduces them to a much smaller size, 

often just a few bits. This is accomplished by 

encoding the string data as binary bits using a 

Huffman encoder, which is typically implemented 

using a VLSI architecture. The encoding process 

involves two key steps: frequency sorting and 

Huffman coding. The frequency sorting block sorts 

the strings based on their frequency, typically in 

terms of ASCII values. This sorted data is then 

passed to the Huffman encoder, which assigns a 

variable-length code to each string based on its 

frequency. The resulting encoded data is typically 

much smaller than the original data, and can be 

decoded back to the original data with negligible 

loss of information. In this article, we propose a 

modified version of the Huffman encoding 

technique that encodes each byte into less than one 

byte. Specifically, we take 64 bits of data, 

consisting of eight string values, and sort them 

based on their ASCII values. The resulting data is 

then passed through a Huffman encoder to further 

reduce its size. In the worst case, the encoded data 

will still be 8 bits (i.e., 1 byte), but in most cases it 

will be much smaller.    

I. INTRODUCTION   
 

        Huffman encoding is a widely used 

compression technique that minimizes the amount 

of input data by assigning shorter codes to 

frequently occurring symbols. In order to achieve 

high compression ratios, the input data must be 

sorted by frequency before being passed to the 

Huffman block. To address the limitations of current 

devices, a high-throughput Huffman encoder VLSI 

design based on the typical/canonical Huffman 

encoder was proposed in this study. In this 

architecture, each input symbol is treated as a 

separate node in a tree, and the two lowest frequency 

nodes are merged to form a new node. To optimize 

memory allocation for Huffman coding, a pre-

defined code word table was suggested to reduce the 

computational workload with minimal performance 

degradation[10]. However, searching for Huffman 

codes in the table requires many clock cycles, which 

can limit the efficiency of Huffman coding. To 

improve the efficiency, a novel data structure was 

developed, although the properties of this data 

structure required challenging calculations, 

resulting in a low clock frequency. Although a PLA 

approach can achieve fast Huffman coding, it often 

requires significant hardware to store the code word 

table[12].

 
Fig 1:- process of canonical Huffman coding 

 

The diagram presented depicts the process of 

Canonical Huffman encoding. This paper is divided 

into several sections. Firstly, in Section II, an 

overview of the Canonical Huffman encoder 

algorithm is presented. Then, Section III describes 



the proposed serial architecture in detail. Section IV 

provides experimental results, which are compared 

to other architectures. Finally, Section V provides 

brief conclusions. 

II. OVERVIEW OF CANONICAL 

HUFFMAN ENCODING 

Huffman Coding is a lossless data compression 

technique that assigns a variable length prefix code 

to each character in the data. The code assigned to 

each character is based on its frequency in the data, 

with the least frequent character getting the largest 

code and the most frequent character getting the 

smallest code. While encoding the data is 

straightforward and efficient, decoding the bitstream 

generated by this method is not very efficient. To 

decode the data back to its original characters, the 

decoder needs to know the encoding mechanism 

used. Therefore, information about the encoding 

process is passed to the decoder as a table of 

characters and their corresponding codes. In regular 

Huffman coding of large data, the table takes up a 

lot of memory space, and if there are many unique 

characters in the data, the compressed data size 

increases due to the presence of the codebook. To 

make the decoding process computationally 

efficient while maintaining a good compression 

ratio, Canonical Huffman codes were introduced. In 

Canonical Huffman coding, the bit lengths of the 

standard Huffman codes generated for each symbol 

are used. The symbols are sorted according to their 

bit lengths in non-decreasing order and then sorted 

lexicographically for each bit length. The first 

symbol gets a code containing all zeros and of the 

same length as its original bit length. For subsequent 

symbols, if a symbol has the same bit length as the 

previous symbol, then the code of the previous 

symbol is incremented by one and assigned to the 

present symbol. Otherwise, if the symbol has a bit 

length greater than that of the previous symbol, the 

code of the previous symbol is incremented, zeros 

are appended until the length becomes equal to the 

bit length of the current symbol, and then the code 

is assigned to the current symbol. This process 

continues for the rest of the symbols.     

III. PROPOSED SYSTEM 

 

A. Overview 

The proposed design consists of three stages: 

Frequency-Generation, Code-Size Computing & 

Sorting, and Code-Size-Limiting, as shown in 

Figure 2. To improve the encoding efficiency and 

overcome the limitations of the Canonical Huffman 

encoder, we propose two types of real-time 

frequency-sorting architectures in the first two 

stages that process the input symbol in a series 

scheme. Details of these architectures are provided 

in Sections III-B and III-C. The code-size-sorting 

module generates a temporary sorted result of the 

code-size data queue at each clock cycle, based on 

the hardware architecture. Once the code-size 

calculation process is complete, the 

HUFFMANVAL results are simultaneously 

generated. 

 
 

Fig 2:- System circuit block diagram. 

 

 
 

Fig 3:- Timing diagram comparison between the 

proposed architecture and the traditional designs. 



This brief also presents an efficient VLSI 

architecture for the Code-Size-Limiting stage, 

which limits the bit length to enhance the encoding 

speed. The last stage is based on standard 

algorithms, and this brief optimizes the nesting of 

the algorithms to reduce the circuit area and power 

consumption effectively. 

 

As depicted in Figure 3, the proposed architecture 

reduces the required clock cycle significantly 

compared to traditional Huffman encoder designs. 

 

B. Architecture of Frequency-Generation Stage 

The proposed stage consists of two parallel parts - the 

frequency-statistics process and the frequency-

sorting process. It "eats" one symbol per cycle and 

generates 256 sets of ordered frequencies. This can 

be done almost simultaneously when the last symbol 

is entered due to the insertion of only two pipeline 

stages, leading to significant improvement in 

throughput and reduction in encoding time. This is in 

contrast to traditional designs where the sorting 

module is initiated only after completion of 

frequency statistics of all input symbols. 

 

 
 

Fig 4:-  working Mechanism of Frequency-

Statistics & Sorting Stage 

 

The operating mechanism of the Frequency-

Statistics & Sorting stage is illustrated in Fig. 4. To 

optimize the performance of the sorting algorithm 

and improve efficiency by reducing the clock cycle, 

the sorting process is used to identify two nodes with 

the minimum and sub-minimum frequencies. To 

accelerate the encoding efficiency and realize the 

parallel characteristics, 257 cells 

(Cell_0∼Cell_256) are employed to store and 

update each symbol and its frequency. Cell_256 

holds the symbol with the largest frequency in the 

final result, Cell_255 holds the symbol with the 

second-largest frequency, and so on. Finally, Cell_0 

stores the symbol with the smallest frequency, while 

Cell_256 provides an inverse code point. 

 

 
 

Fig 5:-  Tree chat of Frequency-Statistics & Sorting 

Stage 

 

 

The operating steps of the Frequency-Statistics 

& Sorting stage are shown in Fig. 4, which 

includes the following steps: 

• Step-0: The initial stage. 

• Step-1: The proposed design receives the 

input symbol. For example, assuming the current 

input symbol is "100," each cell's stored symbols 

are compared with "100." 

• Step-2: The cell that stores the input symbol 

"100" will be positioned, and the corresponding 

signal SYMBOL_EN[100] will be set to "1." 

Additionally, the signal 

Shift_EN_100∼Shift_EN_256 will be set to "1." 

• Step-3: The Shift_EN signal that is set to 

1'b1 indicates that the corresponding cell needs 

updating. Meanwhile, the new frequency 

FREQ_NEW, which is one more than the 

original frequency, is added. Additionally, 

FREQ_OUT_A in the cell that stores the symbol 

"100" is also increased by 1. 

• Step-4: Each selected cell in Step-3 will be 

updated according to the method shown in Fig. 

5. 

• Step-5: The sorted frequency and its symbol 

are output. For example, Cell_255 has a 

frequency of "1," and the corresponding symbol 

is "100." 

 

The updating mechanism of each cell is shown 

in Fig. 5. If the Shift_EN signal is 1'b1, the 

frequency and symbol of the corresponding 

modules will be updated according to the 



relationship between FREQ_NEW, 

FREQ_RIGHT, and FREQ_0. In this way, the 

values stored in Cell_0∼Cell_256 can be 

updated simultaneously in the same clock cycle. 

 

 
 

Fig. 6 shows the VLSI architecture of Sorting-

Module-1. 

 

 The Signal Generating block counts the 

frequencies of the input symbols according to 

Step-3 in Fig. 4, where the Symbol_Set's value 

is consistent with the input symbol. 

Cell_0∼Cell_256 generate sorted results based 

on the methods shown in Step-4 and Step-5 of 

Fig. 4. The Signal Generating block and the 257 

cells are triggered synchronously by the clock 

and operate in parallel. Therefore, a temporary 

frequency statistic and its sorted results are 

obtained at each clock cycle. As a result, when 

the last symbol is input, the accurate frequency 

statistics and the final sorted result will be 

produced simultaneously. Compared with the 

traditional sequential structure of statistics 

before sorting, this proposed architecture can 

save many clock cycles and improve the 

encoding efficiency. 

 

C. Code-Size Computing & Sorting Stage 

 

The primary operation of this stage is based on the 

Canonical Huffman encoding algorithm, which 

consists of the following steps: 

1. Select the two symbols V1 and V2 with the 

minimum and second minimum frequency, 

respectively, and merge them into a new node. 

2. Add the frequencies of V1 and V2 to create the 

frequency of the new node. Also, increase the code-

sizes of V1 and V2 by one. 

3. Sort the new node with other symbols and repeat 

steps 1 and 2 until all symbols have code-sizes. 

4. Once all symbols have code-sizes, sort them from 

smallest to largest to group them. 

 

The stage comprises three primary components - 

Sorting-module-1, Code-size_sorting, and 

FSM_code_size - as shown in Fig. 2. The 

FSM_code_size module controls the other two 

modules to work in parallel using a finite-state 

machine as its core. 

 
 

If the signal END_OF_DATA is set to 1'b1, 

indicating that all 256 frequency sets have been 

ordered by the first stage, the FSM_code_size 

module will initiate the code-size calculation 

process, which involves re-ordering the updated 

frequency queue using Sorting module-1 and 

ordering the code-size queue executed by the Code-

size_sorting module. The FSM_code_size module 

uses a finite-state machine as the kernel to schedule 

the other two modules operating in parallel. The 

state transition diagram of the FSM_code_size is 

presented in Fig. 7, where state "0" represents the 

initial state, state "1" is used to find the symbols V1 

and V2, states "2" and "3" are used to sum the 

frequencies of V1 and V2, and states "4"-"10" are 

used to calculate the code-sizes of V1 and V2, 

update the new V1 and V2 simultaneously, and send 

the code-size to the Code-size_sorting module.  

 

 
Fig 8:-  Mechanism Of Code Size Sorting 

 

It is important to note that the Sorting module-1 of 

the Frequency-Statistics & Sorting stage is reused in 

this stage to ensure that the new V1 and V2 can be 

found at every clock cycle, which can significantly 

reduce the area of the entire design. Additionally, in 

traditional methods, the sorting of the codesize is 

not started until the computation of all symbols’ 

codesizes have been completed, leading to 

significant time waste. However, in this stage, the 

computing and sorting of the codesize are performed 

in parallel. 

 

D. Code-Size-Limiting Stage 

 

The module in question typically features three 

nested layers of lookup tables, according to standard 

algorithms. A VLSI design of this module is depicted 

in Figure 8(a), which includes three large hardware 

blocks: CODESIZE look-up tables, BITS look-up 

table, and MUX-I. Unfortunately, these blocks are 

known to cause issues such as long propagation 

delay, large area, and high power consumption. To 



address these concerns, an optimized architecture has 

been designed as shown in Figure 8(b). Firstly, the 

sequential lookup table found in the standard 

algorithm has been optimized for parallel lookup, 

ensuring that only one lookup table is on the timing 

path. Secondly, simulation tests were conducted to 

identify the presence of redundant content in the BIT 

table, which is not used in practice. Therefore, the 

BIT size was reduced from 32*257 to 32*16, using 

only valid content in the table. This, in turn, reduces 

the size of the multiplexer. Many simulation 

experiments have verified the method's functional 

correctness, and it greatly reduces both the logic 

delay and the area. 

 

IV. RESULTS AND DISCUSSION 
 

The Verilog HDL was used to describe the proposed 

VLSI architecture, which was then synthesized 

using the Synopsys Design Compiler and the SMIC 

0.18µm standard CMOS cell library. The synthesis 

results indicated that the proposed architecture was 

able to operate at a frequency of 400 MHz. The area 

of the VLSI architecture was measured at 

2,008,766µm2, and the power consumption was 

850.84mW. In comparison, the design presented in 

reference [11] had an area of 340,114µm2 and 

operated at a frequency of 50 MHz. 

 
 

Fig 9:-  Throughput comparison of the VLSI 

architecture. 

To evaluate the throughput of the proposed 

Huffman encoder, reference [11] used 256 8-bit 

symbols. The encoding time was 840 × 20 ns = 

16800 ns. To demonstrate the performance of the 

proposed encoder, 200 groups of 256 8-bit symbols 

were tested. The proposed VLSI architecture took 

4,952 × 2.5 ns = 12,380 ns for encoding, which was 

26.30% faster than the design in reference [11]. 

 

To test the high throughput of the VLSI architecture 

further, the number of 8-bit symbols was increased 

by 256 at a time, as shown in Fig. 9. When encoding 

10,240 8-bit symbols, the proposed VLSI 

architecture reduced the encoding time by 79.52%, 

taking 17,726 × 2.5 ns = 44,315 ns. In comparison, 

the design in reference [11] required 10,824 × 20 ns 

= 216,480 ns. 

 
Fig 10:- Area Comparison 

 

 
Fig 11:- Delay Comparison 

 

The VLSI architecture proposed in this study was 

implemented using the Synopsys Design Compiler 

and described using Verilog HDL. The standard 

CMOS cell library used for synthesis was SMIC 

0.18µm micron. Synthesis results showed that the 

proposed architecture had an operating frequency of 

400 MHz, an area of 2,008,766µm2, and a power 

consumption of 850.84mW. In comparison, the 

design presented in [11] had an operating frequency 

of 50 MHz and an area of 340,114µm2. To test the 

throughput of the proposed Huffman encoder, the 

authors used 256 8-bit symbols in [11], while 200 

groups of 256 8-bit symbols were used in this study. 

The proposed architecture reduced the encoding 

time by 26.30% and 79.52% when encoding 256 8-

bit symbols and 10,240 8-bit symbols, respectively, 

in comparison with the design in [11]. The Kodak24 

data set was used to evaluate the performance of the 

proposed architecture. The average encoding time 

for the AC coefficients of the Y channel was 

537,338.4 ns for the proposed architecture and 

4,264,517.5 ns for the design in [11]. The proposed 

architecture reduced the encoding time by 87.40%. 

When applied to 100 testing pictures downloaded 

from Taobao.com with Q value of 100, the proposed 

architecture improved the compression rate by 

12.24% on average. The efficiency of the proposed 

architecture was evaluated using a ratio, which was 



calculated to be 0.653. A smaller value of this ratio 

indicates better performance of the circuit designed 

in this study. 

 

V. CONCLUSION 
 

The aim of this paper is to implement a canonical 

Huffman encoder that includes a frequency sorter, 

which sorts the input string in ascending order with 

respect to ASCII values, and the Huffman encoder 

encodes the string to bits using trees, nodes, and 

leafs concepts. This proposed architecture can be 

applied in various applications where data 

compression is necessary, such as IoT and many 

other applications. The Frequency-Statistics process 

and the sorting process operate almost in parallel in 

the Frequency-Statistics & Sorting Stage, which 

reduces the time consumption of the pre-scan. The 

Code-Size Computing & Sorting Stage also 

performs code-size computing and sorting almost in 

parallel, reducing the required clock cycle 

significantly. Compared with the traditional 

Huffman encoder, the proposed Canonical Huffman 

encoder circuit in this brief achieves improved 

coding efficiency.  
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