
A HIGH THROUGHPUT VLSI ARCHITURE

DESIGN OF CANONICAL HUFFMAN

ENCODER

Dr. S. Vijayalakshmi

Department of Electronics and Communication Engineering

Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India.

E. Harinath Reddy Yadav

Department of Electronics and

Communication Engineering

Vel Tech Rangarajan Dr.

Sagunthala R&D Institute of

Science and Technology,

Chennai, India.

V. Padmasri Kavitha

Department of Electronics and

Communication Engineering

Vel Tech Rangarajan Dr.

Sagunthala R&D Institute of

Science and Technology,

Chennai, India.

U. Ramadevi

Department of Electronics and

Communication Engineering

Vel Tech Rangarajan Dr.

Sagunthala R&D Institute of

Science and Technology,

Chennai, India.

Abstract—

The Huffman encoding technique is a method of

compressing data that takes input in the form of

strings, which are typically 1 byte or 8 bits in

length, and reduces them to a much smaller size,

often just a few bits. This is accomplished by

encoding the string data as binary bits using a

Huffman encoder, which is typically implemented

using a VLSI architecture. The encoding process

involves two key steps: frequency sorting and

Huffman coding. The frequency sorting block sorts

the strings based on their frequency, typically in

terms of ASCII values. This sorted data is then

passed to the Huffman encoder, which assigns a

variable-length code to each string based on its

frequency. The resulting encoded data is typically

much smaller than the original data, and can be

decoded back to the original data with negligible

loss of information. In this article, we propose a

modified version of the Huffman encoding

technique that encodes each byte into less than one

byte. Specifically, we take 64 bits of data,

consisting of eight string values, and sort them

based on their ASCII values. The resulting data is

then passed through a Huffman encoder to further

reduce its size. In the worst case, the encoded data

will still be 8 bits (i.e., 1 byte), but in most cases it

will be much smaller.

I. INTRODUCTION

 Huffman encoding is a widely used

compression technique that minimizes the amount

of input data by assigning shorter codes to

frequently occurring symbols. In order to achieve

high compression ratios, the input data must be

sorted by frequency before being passed to the

Huffman block. To address the limitations of current

devices, a high-throughput Huffman encoder VLSI

design based on the typical/canonical Huffman

encoder was proposed in this study. In this

architecture, each input symbol is treated as a

separate node in a tree, and the two lowest frequency

nodes are merged to form a new node. To optimize

memory allocation for Huffman coding, a pre-

defined code word table was suggested to reduce the

computational workload with minimal performance

degradation[10]. However, searching for Huffman

codes in the table requires many clock cycles, which

can limit the efficiency of Huffman coding. To

improve the efficiency, a novel data structure was

developed, although the properties of this data

structure required challenging calculations,

resulting in a low clock frequency. Although a PLA

approach can achieve fast Huffman coding, it often

requires significant hardware to store the code word

table[12].

Fig 1:- process of canonical Huffman coding

The diagram presented depicts the process of

Canonical Huffman encoding. This paper is divided

into several sections. Firstly, in Section II, an

overview of the Canonical Huffman encoder

algorithm is presented. Then, Section III describes

the proposed serial architecture in detail. Section IV

provides experimental results, which are compared

to other architectures. Finally, Section V provides

brief conclusions.

II. OVERVIEW OF CANONICAL

HUFFMAN ENCODING

Huffman Coding is a lossless data compression

technique that assigns a variable length prefix code

to each character in the data. The code assigned to

each character is based on its frequency in the data,

with the least frequent character getting the largest

code and the most frequent character getting the

smallest code. While encoding the data is

straightforward and efficient, decoding the bitstream

generated by this method is not very efficient. To

decode the data back to its original characters, the

decoder needs to know the encoding mechanism

used. Therefore, information about the encoding

process is passed to the decoder as a table of

characters and their corresponding codes. In regular

Huffman coding of large data, the table takes up a

lot of memory space, and if there are many unique

characters in the data, the compressed data size

increases due to the presence of the codebook. To

make the decoding process computationally

efficient while maintaining a good compression

ratio, Canonical Huffman codes were introduced. In

Canonical Huffman coding, the bit lengths of the

standard Huffman codes generated for each symbol

are used. The symbols are sorted according to their

bit lengths in non-decreasing order and then sorted

lexicographically for each bit length. The first

symbol gets a code containing all zeros and of the

same length as its original bit length. For subsequent

symbols, if a symbol has the same bit length as the

previous symbol, then the code of the previous

symbol is incremented by one and assigned to the

present symbol. Otherwise, if the symbol has a bit

length greater than that of the previous symbol, the

code of the previous symbol is incremented, zeros

are appended until the length becomes equal to the

bit length of the current symbol, and then the code

is assigned to the current symbol. This process

continues for the rest of the symbols.

III. PROPOSED SYSTEM

A. Overview

The proposed design consists of three stages:

Frequency-Generation, Code-Size Computing &

Sorting, and Code-Size-Limiting, as shown in

Figure 2. To improve the encoding efficiency and

overcome the limitations of the Canonical Huffman

encoder, we propose two types of real-time

frequency-sorting architectures in the first two

stages that process the input symbol in a series

scheme. Details of these architectures are provided

in Sections III-B and III-C. The code-size-sorting

module generates a temporary sorted result of the

code-size data queue at each clock cycle, based on

the hardware architecture. Once the code-size

calculation process is complete, the

HUFFMANVAL results are simultaneously

generated.

Fig 2:- System circuit block diagram.

Fig 3:- Timing diagram comparison between the

proposed architecture and the traditional designs.

This brief also presents an efficient VLSI

architecture for the Code-Size-Limiting stage,

which limits the bit length to enhance the encoding

speed. The last stage is based on standard

algorithms, and this brief optimizes the nesting of

the algorithms to reduce the circuit area and power

consumption effectively.

As depicted in Figure 3, the proposed architecture

reduces the required clock cycle significantly

compared to traditional Huffman encoder designs.

B. Architecture of Frequency-Generation Stage

The proposed stage consists of two parallel parts - the

frequency-statistics process and the frequency-

sorting process. It "eats" one symbol per cycle and

generates 256 sets of ordered frequencies. This can

be done almost simultaneously when the last symbol

is entered due to the insertion of only two pipeline

stages, leading to significant improvement in

throughput and reduction in encoding time. This is in

contrast to traditional designs where the sorting

module is initiated only after completion of

frequency statistics of all input symbols.

Fig 4:- working Mechanism of Frequency-

Statistics & Sorting Stage

The operating mechanism of the Frequency-

Statistics & Sorting stage is illustrated in Fig. 4. To

optimize the performance of the sorting algorithm

and improve efficiency by reducing the clock cycle,

the sorting process is used to identify two nodes with

the minimum and sub-minimum frequencies. To

accelerate the encoding efficiency and realize the

parallel characteristics, 257 cells

(Cell_0∼Cell_256) are employed to store and

update each symbol and its frequency. Cell_256

holds the symbol with the largest frequency in the

final result, Cell_255 holds the symbol with the

second-largest frequency, and so on. Finally, Cell_0

stores the symbol with the smallest frequency, while

Cell_256 provides an inverse code point.

Fig 5:- Tree chat of Frequency-Statistics & Sorting

Stage

The operating steps of the Frequency-Statistics

& Sorting stage are shown in Fig. 4, which

includes the following steps:

• Step-0: The initial stage.

• Step-1: The proposed design receives the

input symbol. For example, assuming the current

input symbol is "100," each cell's stored symbols

are compared with "100."

• Step-2: The cell that stores the input symbol

"100" will be positioned, and the corresponding

signal SYMBOL_EN[100] will be set to "1."

Additionally, the signal

Shift_EN_100∼Shift_EN_256 will be set to "1."

• Step-3: The Shift_EN signal that is set to

1'b1 indicates that the corresponding cell needs

updating. Meanwhile, the new frequency

FREQ_NEW, which is one more than the

original frequency, is added. Additionally,

FREQ_OUT_A in the cell that stores the symbol

"100" is also increased by 1.

• Step-4: Each selected cell in Step-3 will be

updated according to the method shown in Fig.

5.

• Step-5: The sorted frequency and its symbol

are output. For example, Cell_255 has a

frequency of "1," and the corresponding symbol

is "100."

The updating mechanism of each cell is shown

in Fig. 5. If the Shift_EN signal is 1'b1, the

frequency and symbol of the corresponding

modules will be updated according to the

relationship between FREQ_NEW,

FREQ_RIGHT, and FREQ_0. In this way, the

values stored in Cell_0∼Cell_256 can be

updated simultaneously in the same clock cycle.

Fig. 6 shows the VLSI architecture of Sorting-

Module-1.

 The Signal Generating block counts the

frequencies of the input symbols according to

Step-3 in Fig. 4, where the Symbol_Set's value

is consistent with the input symbol.

Cell_0∼Cell_256 generate sorted results based

on the methods shown in Step-4 and Step-5 of

Fig. 4. The Signal Generating block and the 257

cells are triggered synchronously by the clock

and operate in parallel. Therefore, a temporary

frequency statistic and its sorted results are

obtained at each clock cycle. As a result, when

the last symbol is input, the accurate frequency

statistics and the final sorted result will be

produced simultaneously. Compared with the

traditional sequential structure of statistics

before sorting, this proposed architecture can

save many clock cycles and improve the

encoding efficiency.

C. Code-Size Computing & Sorting Stage

The primary operation of this stage is based on the

Canonical Huffman encoding algorithm, which

consists of the following steps:

1. Select the two symbols V1 and V2 with the

minimum and second minimum frequency,

respectively, and merge them into a new node.

2. Add the frequencies of V1 and V2 to create the

frequency of the new node. Also, increase the code-

sizes of V1 and V2 by one.

3. Sort the new node with other symbols and repeat

steps 1 and 2 until all symbols have code-sizes.

4. Once all symbols have code-sizes, sort them from

smallest to largest to group them.

The stage comprises three primary components -

Sorting-module-1, Code-size_sorting, and

FSM_code_size - as shown in Fig. 2. The

FSM_code_size module controls the other two

modules to work in parallel using a finite-state

machine as its core.

If the signal END_OF_DATA is set to 1'b1,

indicating that all 256 frequency sets have been

ordered by the first stage, the FSM_code_size

module will initiate the code-size calculation

process, which involves re-ordering the updated

frequency queue using Sorting module-1 and

ordering the code-size queue executed by the Code-

size_sorting module. The FSM_code_size module

uses a finite-state machine as the kernel to schedule

the other two modules operating in parallel. The

state transition diagram of the FSM_code_size is

presented in Fig. 7, where state "0" represents the

initial state, state "1" is used to find the symbols V1

and V2, states "2" and "3" are used to sum the

frequencies of V1 and V2, and states "4"-"10" are

used to calculate the code-sizes of V1 and V2,

update the new V1 and V2 simultaneously, and send

the code-size to the Code-size_sorting module.

Fig 8:- Mechanism Of Code Size Sorting

It is important to note that the Sorting module-1 of

the Frequency-Statistics & Sorting stage is reused in

this stage to ensure that the new V1 and V2 can be

found at every clock cycle, which can significantly

reduce the area of the entire design. Additionally, in

traditional methods, the sorting of the codesize is

not started until the computation of all symbols’

codesizes have been completed, leading to

significant time waste. However, in this stage, the

computing and sorting of the codesize are performed

in parallel.

D. Code-Size-Limiting Stage

The module in question typically features three

nested layers of lookup tables, according to standard

algorithms. A VLSI design of this module is depicted

in Figure 8(a), which includes three large hardware

blocks: CODESIZE look-up tables, BITS look-up

table, and MUX-I. Unfortunately, these blocks are

known to cause issues such as long propagation

delay, large area, and high power consumption. To

address these concerns, an optimized architecture has

been designed as shown in Figure 8(b). Firstly, the

sequential lookup table found in the standard

algorithm has been optimized for parallel lookup,

ensuring that only one lookup table is on the timing

path. Secondly, simulation tests were conducted to

identify the presence of redundant content in the BIT

table, which is not used in practice. Therefore, the

BIT size was reduced from 32*257 to 32*16, using

only valid content in the table. This, in turn, reduces

the size of the multiplexer. Many simulation

experiments have verified the method's functional

correctness, and it greatly reduces both the logic

delay and the area.

IV. RESULTS AND DISCUSSION

The Verilog HDL was used to describe the proposed

VLSI architecture, which was then synthesized

using the Synopsys Design Compiler and the SMIC

0.18µm standard CMOS cell library. The synthesis

results indicated that the proposed architecture was

able to operate at a frequency of 400 MHz. The area

of the VLSI architecture was measured at

2,008,766µm2, and the power consumption was

850.84mW. In comparison, the design presented in

reference [11] had an area of 340,114µm2 and

operated at a frequency of 50 MHz.

Fig 9:- Throughput comparison of the VLSI

architecture.

To evaluate the throughput of the proposed

Huffman encoder, reference [11] used 256 8-bit

symbols. The encoding time was 840 × 20 ns =

16800 ns. To demonstrate the performance of the

proposed encoder, 200 groups of 256 8-bit symbols

were tested. The proposed VLSI architecture took

4,952 × 2.5 ns = 12,380 ns for encoding, which was

26.30% faster than the design in reference [11].

To test the high throughput of the VLSI architecture

further, the number of 8-bit symbols was increased

by 256 at a time, as shown in Fig. 9. When encoding

10,240 8-bit symbols, the proposed VLSI

architecture reduced the encoding time by 79.52%,

taking 17,726 × 2.5 ns = 44,315 ns. In comparison,

the design in reference [11] required 10,824 × 20 ns

= 216,480 ns.

Fig 10:- Area Comparison

Fig 11:- Delay Comparison

The VLSI architecture proposed in this study was

implemented using the Synopsys Design Compiler

and described using Verilog HDL. The standard

CMOS cell library used for synthesis was SMIC

0.18µm micron. Synthesis results showed that the

proposed architecture had an operating frequency of

400 MHz, an area of 2,008,766µm2, and a power

consumption of 850.84mW. In comparison, the

design presented in [11] had an operating frequency

of 50 MHz and an area of 340,114µm2. To test the

throughput of the proposed Huffman encoder, the

authors used 256 8-bit symbols in [11], while 200

groups of 256 8-bit symbols were used in this study.

The proposed architecture reduced the encoding

time by 26.30% and 79.52% when encoding 256 8-

bit symbols and 10,240 8-bit symbols, respectively,

in comparison with the design in [11]. The Kodak24

data set was used to evaluate the performance of the

proposed architecture. The average encoding time

for the AC coefficients of the Y channel was

537,338.4 ns for the proposed architecture and

4,264,517.5 ns for the design in [11]. The proposed

architecture reduced the encoding time by 87.40%.

When applied to 100 testing pictures downloaded

from Taobao.com with Q value of 100, the proposed

architecture improved the compression rate by

12.24% on average. The efficiency of the proposed

architecture was evaluated using a ratio, which was

calculated to be 0.653. A smaller value of this ratio

indicates better performance of the circuit designed

in this study.

V. CONCLUSION

The aim of this paper is to implement a canonical

Huffman encoder that includes a frequency sorter,

which sorts the input string in ascending order with

respect to ASCII values, and the Huffman encoder

encodes the string to bits using trees, nodes, and

leafs concepts. This proposed architecture can be

applied in various applications where data

compression is necessary, such as IoT and many

other applications. The Frequency-Statistics process

and the sorting process operate almost in parallel in

the Frequency-Statistics & Sorting Stage, which

reduces the time consumption of the pre-scan. The

Code-Size Computing & Sorting Stage also

performs code-size computing and sorting almost in

parallel, reducing the required clock cycle

significantly. Compared with the traditional

Huffman encoder, the proposed Canonical Huffman

encoder circuit in this brief achieves improved

coding efficiency.

REFERENCES

[1] Huffman, D. A. “A method for the

construction of minimum-redundancy

codes,” Proceedings of the IRE, vol. 40,

no. 9, pp. 1098–1101, Sep. 1952.

[2] Sarkar, S. J., Sarkar, N. K., and Banerjee,

A. “A novel Huffman coding based

approach to reduce the size of large data

array,” in Proceedings of the International

Conference on Circuit Power and

Computing Technologies (ICCPCT),

Nagercoil, India, 2016, pp. 1–5.

[3] Liu, Y. and Luo, L. “Lossless compression

of full-surface solar magnetic field image

based on Huffman coding,” in Proceedings

of the IEEE 2nd Information Technology,

Networking, Electronic and Automation

Control Conference (ITNEC), Chengdu,

China, 2017, pp. 899–903.

[4] Markandeya, N. and Patil, S. “Improve

information rate in Thien and Lin’s image

secret sharing scheme using Huffman

coding technique,” in Proceedings of the

International Conference on Computing,

Communication, Control and Automation

(ICCUBEA), Pune, India, 2017, pp. 1–5.

[5] Patil, R. B. and Kulat, K. D. “Audio

compression using dynamic Huffman and

RLE coding,” in Proceedings of the 2nd

International Conference on

Communication and Electronics Systems

(ICCES), Coimbatore, India, 2017, pp.

160–162.

[6] Kumar, N. H., Patil, R. M., Deepak, G.,

and Murthy, B. M. “A novel approach for

securing data in IoTcloud using DNA

cryptography and Huffman coding

algorithm,” in Proceedings of the

International Conference on Innovative

Information and Embedded Systems

(ICIIECS), Coimbatore, India, 2017, pp. 1–

4.

[7] Keerthy, S. V., Kishore, T. K. C. R.,

Karthikeyan, B., Vaithiyanathan, V., and

Raj, M. M. A. “A hybrid technique for

quadrant based data hiding using Huffman

coding,” in Proceedings of the

International Conference on Innovative

Information and Embedded

Communication Systems (ICIIECS),

Coimbatore, India, 2015, pp. 1–6.

[8] ISO/IEC 10918-1:1994. Information

technology – Digital compression and

coding of continuous-tone still images:

Requirements and guidelines, 2017.

[9] ISO/IEC 13818-2:2013. Information

technology – Generic coding of moving

pictures and associated audio information –

Part 2: Video, 2019.

[10] Lee, S. J., Yang, K. H., Song, J. S., and

Lee, C. W. “An efficient memory

allocation scheme for Huffman coding of

multiple sources,” Signal Processing:

Image Communication, vol. 14, pp. 311–

323, Jan. 1999.

[11] Wei, R., and Zhang, X. “Efficient VLSI

Huffman encoder implementation and its

application in high rate serial data

encoding,” IEICE Electronics Express, vol.

14, no. 21, pp. 1–11, Oct. 2017.

[12] Lei, S.-M. and Sun, M.-T. “An entropy

coding system for digital HDTV

applications,” IEEE Transactions on

Circuits and Systems for Video

Technology, vol. 1, no. 1, pp. 147–155,

Mar. 1991.

[13] [13] T. Kumaki et al. presented a paper on

"CAM-based VLSI architecture for

Huffman coding with real-time

optimization of the code word table" at the

IEEE International Symposium on Circuits

and Systems in 2005 (vol. 5, pp. 5202–

5205).

