Crop Yield Prediction Using Satellite Images
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Abstract—Crop yield estimation is a main task for economic and food management. The inadequate storage facilities and inadequate capital, and an unpredictable climate raise concerns for farmers and in the worst case, it may even lead to loss of life.
The yield prediction helps the farmers to improve crop produc- tion, calculate their savings, and to sanction loans according to the farmer’s capability directly from the office rather than going to a remote location for estimation. The increased availability of satellite data leads to further improvement. Deep learning helps the yield prediction applications using satellite images through which we can train the model and predict the future yield.
If there is a way to predict the yield by the end of the season, we can  make a decision  much easy. The project  implies that big businesses can use this model to optimize their price and inventory, the government can prepare for food shortages, and even a farmer be informed of appropriate selling prices if they know the regional yields.
Index Terms—agriculture, satellite crop yield prediction, ma- chine learning

I. INTRODUCTION
The lack of information about future predictions took the life of many farmers. Decision-making would be considerably easier if we could estimate how much can be gained at the end of the season. Satellite images have been demonstrated in studies to forecast the area where each type of crop is grown, providing useful information for production predictions [1]. While satellite photos may be used to anticipate where each type of crop will be grown, the yields in those places remain unknown. As a result, this study aims to forecast crop yields using data from several satellite pictures. This initiative has far-reaching ramifications because businesses may use it to optimise their pricing and inventories, governments can plan for potential food shortages, and farmers can be advised of fair selling prices if they know the regional yields.
II. 
PROBLEM STATEMENT
The rapid advancement in modern technology and the other corner is the agricultural industry. Due to a lack of information and communication, many lives of innocent farmers were taken away. The improper climatic cycle and market create havoc in the agricultural industry, which is crucial for human society in general. But if modern advancement can guide the blind industry, then the advantage is for the whole community. The rapid space race and satellite services lead to a bright path for the general people. Everything is available at your fingertips. The increase in the availability of satellite data leads to further improvement. Deep learning helps yield prediction applications using satellite images through which we can train the model and predict the future yield.
Due to a lack of knowledge and communication, the agri- cultural business has been struggling, resulting in the loss of life and financial stability for farmers. Climate change and market volatility also contribute to the industry’s insecurity, which is critical for human society as a whole. Modern technology, on the other hand, may provide guidance and assist the sector in overcoming these obstacles. The space race and satellite services have opened up new possibilities, putting everything at people’s fingertips. The increased availability of satellite data has resulted in substantial advancements, and deep learning is now being used to forecast crop yields based on satellite imagery. We can estimate future crop yields and help farmers better plan for the future by training the model.Due to a shortage of resources, the agricultural business has been struggling.
The yield prediction helps the farmers to improve crop production, calculate their savings, and banks to sanction loans according to the farmer’s capability directly from the office rather than going to a remote location for estimation. The increase in the availability of satellite data leads to further improvement. Deep learning help in yield prediction

applications using satellite images through which we can train the model and predict the future yield.
This project aims to tackle this data using a data-driven approach, mainly hoping to:
· Identify correlations between satellite images and crop yields.
· Build a regression model to predict yields from these images using data from 2015 - 2020 as training and yield in 2021 as a test set.
· Determine how early we can accurately predict the yields.
III. RELATED WORK
A. Remote-Sensing-Based Crop Yield Prediction
The paper by You et al. [1] is based on crop prediction using convolutional neural networks (CNNs), however it is not the first to attempt to estimate crop yield using easily quantifiable proxies. Because they are positively correlated with crop yield, normalised difference vegetation indices (NDVIs) are among the most widely used proxies [2]. Researchers like
J.L. Hatfield employed vegetation indices from infrared and red wavelengths to forecast prospective and actual crop yield back in 1983 [3, 4]. David Lobell presented a report in 2013 that used MODIS satellite pictures to assess and analyse the difference between potential and actual crop yields. Lobell’s research was based on establishing connections between crop yields and vegetation indices calculated from remote sensing light measurements at red and near-infrared (NIR) wavelengths [5]. This suggests that certain light bands or wavelengths may be more significant than others in producing accurate yield forecasts. Lobell’s method of predicting agricultural production based solely on vegetation indicators is insufficient because other factors may also be connected with crop growth. Johnson’s 2014 article discovered that integrating MODIS daytime land surface temperature measurements can increase prediction accuracy because it was adversely connected with crop growth in the middle of summer.
B. Visualizing Predictions
A countrywide map of expected county-level agricultural yields is a useful visualisation for understanding large-scale crop yield forecast. This type of visualisation can assist government agencies and enterprises in making informed crop management, distribution, and pricing decisions. It can also help with catastrophe planning and response operations, as well as provide vital research data. However, as previously said, it does not provide much information about how the model interacts with raw satellite data to generate predictions. As a result, more complex visualisations, such as saliency maps, might be useful for understanding the model’s inner workings [7]. Saliency maps are a sort of visualisation that can aid in determining which pixels in a raw image contribute the most to the output of a complex model. Karen Simonyan et al. introduced them in 2013 and they have since been widely employed in numerous disciplines of deep learning. Saliency maps compute which pixels are more significant in deciding the model’s prediction based on the gradients of the

output with respect to the input data. It is feasible to see which portions of the image are most essential in making a certain prediction by superimposing these saliency maps on the original photos. This can provide useful insights into how the model makes predictions and can help improve the model’s performance [8]. An occlusion map is a sort of visualisation that quantifies the effect of occluding (covering) specific portions of an image on the model’s prediction accuracy. This is done by placing a window over the image and assessing the change in prediction accuracy when the pixels in the window are replaced with a neutral value (e.g., grey). The generated map shows which image regions are most significant to the model’s prediction. Occlusion maps are more computationally expensive to construct than saliency maps, but they can provide more precise information about how the model uses different portions of a picture to make predictions. However when compared to other types of important visualisations, saliency maps are very simple and inexpensive to create, which is why the authors of the research chose to focus on them. This makes them a great tool for academics who wish to see how their models forecast and which pixels in the input data contribute the most to the output. However, depending on the exact use case, other key visualisations, like as occlusion maps, might also provide essential information and insights.
C. Other Applications of Remote-Sensing Data
Beyond crop yield prediction, the integration of satellite images and machine learning has shown considerable promise in a range of industries. It has been used in environmental applications to identify and monitor oil spills [14], estimate the severity of forest fires [20], and survey animal populations [10]. It has been utilised in social and economic applications such as detecting poverty [12], estimating sub-national GDP [22], analysing city populations [18], and quantifying urban sprawl [19]. Because of the efficiency of these methodologies, remote sensing data-based forecasts are expected to expand in popularity and profitability in the future.
IV. DATASET AND FEATURES
A. Raw Data
The MODIS (Moderate Resolution Imaging Spectrora- diometer) is a critical instrument aboard NASA’s Terra and Aqua spacecraft. It measures the Earth’s surface at a resolution of 250-1000 metres across 36 spectral bands. MODIS data is widely utilised in environmental monitoring and research applications such as vegetation mapping, detection of land cover change, and climate modelling. Google Earth Engine is a cloud-based platform that allows you to process, analyse, and visualise satellite imagery and other geographical data. It offers a vast catalog of satellite data, including MODIS, Landsat, and Sentinel-2, as well as tools for machine learning and geospatial analysis [11]. The raw satellite images collected by NASA’s MODIS instrument were used in the training pipeline for crop yield prediction using satellite imaging. These photos were acquired 38 times every year at a resolution of 500 metres, which meant that each pixel in the image

represented a 500 metre by 500 metre region. The researchers used a subset of 38 images collected between March and December during the maize growing seasons. The MODIS photos contained seven spectral bands ranging from 459 to 2155nm [17], as well as two temperature bands (day and night) [16]. The researchers also analysed USDA soil moisture satellite data, which included surface and subsurface moisture bands. Landcover masks were used to eliminate counties from regions that did not correlate to agriculture. Although the 500- meter resolution may appear coarse, the average area of an Iowa corn field is 349 acres [21], which converts to about four pixels at this resolution. The National Agricultural Statistics Service (NASS) provided the actual county-level crop yield data for the various crops. The researchers limited themselves to using yield data for maize in order to reuse the raw satellite image data across crops. The training set included yield data and photos from 2015 to 2020, and the validation set included data from 2021.
B. Data Cleaning and Preprocessing
The section explains the steps required in preparing satellite imagery for use in training the crop yield forecast model. We examined data from NASA’s MODIS equipment, which gives images with a resolution of 500 metres and seven spectral bands. The data was taken 38 times per year between March and December, throughout the maize growing season. For the ground truth county-level agricultural yield, the authors addi- tionally employed USDA soil moisture satellite data, landcover masks, and NASS yield data.The authors used FIPS numbers from USDA crop yield statistics to query MODIS pictures at the county level. As a consequence, each satellite received 2105 photos with a total file size of 146 GB. However, the photographs were not taken at the same time interval, and some were obscured by clouds, resulting in images with zero values. We performed extensive preprocessing on the images before feeding them into the model, including filling NaN values with zeros, separating and storing images from different years, stacking bands from different satellites together, and masking the images to leave only pixels representing maize fields. We additionally deleted photos with zero values despite possessing USDA ground truth yield data, resulting in a total of 9,062 images (7,709 in training, 1,353 in the test set). The lowest and maximum values of each satellite picture were altered after masking. We used normal tests to examine the distribution of results in each band from multiple satellites and discovered that it was non-normal. When binning the values of each image later in the process, these distributions were used to set the lowest and maximum values.
V. METHODS
A. Exploratory Analysis and Inferential Statistics
We conducted a preliminary study to see if the model could link satellite photos to maize yields. They plotted the association between each band of the photos and maize yields and discovered a good correlation between most of the bands and maize yields, despite substantial outliers. They
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Fig. 1. Preprocessing steps for the satellite images


also discovered that increased moisture content in corn farm regions leads to better corn yields, and that, while temperature does not appear to have a large impact on corn yields overall, higher temperatures tend to lead to lower corn yields. These findings are promising, implying that models should be able to relate picture values to maize yields.
B. Model architecture
Despite the preprocessing, it would take a long time to train the model with all 9,062 photos, each with 11 bands and an average size of roughly 100 x 100 pixels. So, before adding the image to the model, we added more image engineering. We divided the values in each channel into 128 bins, or 1 row, and used visualisation to establish the minimum and maximum number of bins in each channel. As an illustration, in MODIS Terra Land Reflectance band 1, we divided the image value into 128 bins that equally separated values from 0 to 4000 and normalised the counts with the overall number of non-zero pixels in that band of the image. This is justified by the fact that since each farm’s yield is independent of its surroundings, the average yield for each county should only be connected with the distribution of farm yields within that county. The data is thoroughly preprocessed before being fed into the model as a video or audio file. A maximum of 38 frames (each with a height and width of 1 and 128) are generated annually. For the regression problem in this work, we adjusted five models that could be employed for video categorization issues: LSTM was utilised for the RNN in the following models: 1) Self- constructed CNN followed by RNN, 2) Separable CNN-RNN,
3) CNN-LSTM as described by Xingjian et al. [24], 4) 3D CNN, and 5) CNN-RNN followed by 3D CNN. The idea of a single layer CNN-RNN is demonstrated. CNN is used to encode spatial data on all inputs prior to RNN, and RNN accepts each frame (time input) as an input. The anticipated maize yield for that county in a particular year is then produced by feeding the sequence output from the RNN through a second layer of CNN-RNN (i.e., stacked layers) or a fully connected layer (with the proper dropout and regularisation). Each model type was intended to have between 4,500,000 and 5,200,000 training parameters, and it was roughly explored by

altering the number of dropouts and hidden layers. The model was then configured to minimise mean squared error using 16 samples per batch, the default Adam optimizer, and callbacks to terminate the model after 5 consecutive iterations that did not improve.
VI. RESULTS
The anticipated yields in the test set utilising all 38 frames each year with each of the models are shown in Table 2 along with the mean absolute error (MAE) and percentage error from the average yield of the year 2021 (154.83 bushels/acre). The findings show that our own CNN-LSTM, closely followed by CNN-LSTM as defined by [24], produced the greatest results with a percent error of only 10.46 percent. It’s important to note that the primary distinction between these two models is that, whereas the latter sequentially applies CNN to each LSTM input, the former substitutes convolutions for the dense matrix multipliers built into the RNN. However, switching from standard CNN to separable CNN did not result in any improvements. Additionally, performance was poor when solely employing 3D-CNN, perhaps because this particular problem requires temporal information, which CNN is unable to acquire. The CNN-LSTM network did not perform any better when a 3D CNN layer was added at the end.
Our goal at the next level is to identify which counties performed successfully and which did not. This evaluation would help us find the model’s flaws and improve our decision- making when determining if the forecast was reliable.
These visualisations make it clear that regions with excep- tionally low yields, like some regions of Montana and North Dakota, tend to have the model perform poorly. This might be explained by the dearth of samples with such extreme values, and using low yields as the denominator for percent error calculations would make the percentage difference much more pronounced. On the other hand, in areas with typical to high yields, like Iowa, Nebraska, and Illinois, the model works remarkably well (with a percent error of less than 10). This is encouraging since it suggests that the model can predict maize yields in important corn-producing states with accuracy. However, we cannot rely on the 38 frames of picture data over the entire year to estimate yields before the end of the growing season. So, in the part that follows, we’ll look at how far in advance we can predict yields while still retaining a reasonable mean absolute error.
A. Accuracy Improvements
1) Increasing batch size: We tested the ConvLSTM model with various batch sizes in an effort to further optimise the design suggested by [24]. It is obvious that a batch size of 16 produced the greatest results.
2) Reducing Number of frames per year: This section aims to investigate the possibility of anticipating maize yields in advance. A variety of frames to show the mean absolute error (MAE) of anticipated maize yields in 2021. It should be remembered that frame 0 corresponds to March and frame 38 to the year’s conclusion. As might be predicted, as the number

of frames rises, the margin of error falls. It’s interesting to note that we may get a percent error as low as 14.57 by using just 20 frames, which roughly corresponds to the second week of August. This is a lot sooner than the average maize harvest in October, which could happen even later in areas with warmer climates. As a result, this model may allow users to forecast maize yields at the county level early in the growing season.
VII. FUTURE WORK
Future research may find that the most important challenge is to test the validity of the permutation invariance assumption. A convolutional model with a similar amount of parameters to the histogram tensor models used in this study can be created and trained on unprocessed photos. It would demonstrate that there is valuable information to be recovered from the pixel locations within each image if such a model were trained and produced better accuracy than the models looked at in this study. Unfortunately, the dataset we used includes photos with various aspect ratios and sizes, making it difficult to create a model that could take these changes into account. We looked at a number solutions to this problem, including padding the photos to make them the size of the largest image and adding the original width and height of each image as supplemental features. Another option was to use the Spatial Pyramidal Pooling layer suggested by [23]. Consider a scenario in which training on raw photos did not produce better results. In that instance, we could not discount the importance of pixel positions in producing accurate crop yield projections. However, we would have demonstrated that avoiding the permutation invariance assumption does not necessarily give models that do so a benefit. In further research, we could improve the study by using the categorization model, allowing it to automatically mask the pertinent crop before predicting yields.We may use up-sampling in this study to some yield numbers, particularly those that show extremely low yields. It would also be interesting to expand the model’s functionality to forecast yields for several crops at once.
VIII. CONCLUSION
This study demonstrates how utilising more complex mod- els can increase the precision of crop yield forecasts made using MODIS satellite images. This finding implies that more insightful information can still be gained from the gathered data. We looked at the relationships between different satellite picture characteristics, like reflectance, surface temperature, and land moisture, and US maize yields. We made use of these linkages to build a model that predicts maize yields for a specific year while capturing both the spatial and temporal information of these data. ConvLSTM, with a percent error from the mean yields of only 10.46 percent, is the model that performs the best on the test set (corn yields in 2021). We decreased the number of frames needed annually to just 20, or the month of August, to enable early prediction. The agriculture distribution sector’s business strategies as well as those of associated businesses may be significantly impacted by this. In a sense, we found that the models we looked

at may teach us about the relationships between real-world factors that affect the development of various crops. While our experiments did not provide sufficient empirical evidence to determine whether the network’s representations were based on physical processes or merely correlation, they do indicate that neural networks may someday be used to help build models that not only predict but also improve our structural understanding of important physical and social processes.
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To further optimize the CNN-LSTM model, henceforth ConvLSTM, we tried the model on different batch size. As can be seen, the batch size of 16 already resulted in the best performance.

TABLE II

	Batch Size
	Mean Absolute Error(Bushel/acre))

	8
	61.92

	16
	17.17

	32
	16.20

	64
	20.10
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