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ABSTRACT

Speech emotion recognition is a challenging task, and
extensive reliance has been placed on models that use
audio features in building well-performing classifiers. In
this paper, we propose a novel deep dual recurrent
encoder model that utilizes text data and audio signals
simultaneously to obtain a better understanding of speech
data. As emotional dialogue is composed of sound and
spoken content, our model encodes the information from
audio and text sequences using dual recurrent neural
networks (RNNs) and then combines the information
from these sources to predict the emotion class. This
architecture analyzes speech data from the signal level to
the language level, and it thus utilizes the information
within the data more comprehensively than models that
focus on audio features. Extensive experiments are
conducted to investigate the efficacy and properties of the
proposed model. Our proposed model outperforms
previous state-of-the-art methods in assigning data to one
of four emotion categories (i.e., angry, happy, sad and
neutral) when the model is applied to the IEMOCAP
dataset, as reflected by accuracies ranging from 68.8% to
71.8%.

INTRODUCTION

Recently, deep learning algorithms have successfully
addressed problems in various fields, such as image
classification, machine translation, speech recognition,
text-to-speech generation and other machine learning
related areas [1, 2, 3]. Similarly, substantial
improvements in performance have been obtained when
deep learning algorithms have been applied to statistical
speech processing [4]. These fundamental improvements
have led researchers to investigate additional topics

related to human nature, which have long been objects of
study. One such topic involves understanding human
emotions and reflecting it through machine intelligence,
such as emotional dialogue models [5, 6].

In developing emotionally aware intelligence, the very
first step is building robust emotion classifiers that display
good performance regardless of the application; this
outcome is considered to be one of the fundamental
research goals in affective computing [7]. In particular,
the speech emotion recognition task is one of the most
important problems in the field of paralinguistics. This
field has recently broadened its applications, as it is a
crucial factor in optimal humancomputer interactions,
including dialog systems. The goal of speech emotion
recognition is to predict the emotional content of speech
and to classify speech according to one of several labels
(i.e., happy, sad, neutral, and angry). Various types of
deep learning methods have been applied to increase the
performance of emotion classifiers; however, this task is
still considered to be challenging for several reasons.
First, insufficient data for training complex neural
network-based models are available, due to the costs
associated with human involvement. Second, the
characteristics of emotions must be learned from low-
level speech signals. Feature-based models displaylimited
skills when applied to this problem.

To overcome these limitations, we propose a model that
uses high-level text transcription, as well as low-level
audio signals, to utilize the information contained within
low-resource datasets to a greater degree. Given recent
improvements in automatic speech recognition (ASR)
technology [8, 3, 9, 10], speech transcription can be
carried out using audio signals with considerable skill.
The emothe emotion words contained in a sentence [11].
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RELATED WORK

Classical machine learning algorithms, such as hidden
Markov models (HMMs), support vector machines
(SVMs), and decision tree-based methods, have been
employed in speech emotion recognition problems [12,
13, 14]. Recently, researchers have proposed various
neural network-based architectures to improve the
performance of speech emotion recognition. An initial
study utilized deep neural networks (DNNSs) to extract
high-level features from raw audio data and demonstrated
its effectiveness in speech emotion recognition [15]. With
the advancement of deep learning methods, more
complex neuralbased architectures have been proposed.
Convolutional neural network (CNN)-based models have
been trained on information derived from raw audio
signals using spectrograms or audio features such as Mel-
frequency cepstral coefficients (MFCCs) and low-level
descriptors (LLDs) [16, 17, 18]. These neural network-
based models are combined to produce higher-complexity
models [19, 20], and these models achieved the best-
recorded performance when applied to the IEMOCAP
dataset.

Another line of research has focused on adopting variant
machine learning techniques combined with neural
networkbased models. One researcher utilized the
multiobject learning approach and used gender and
naturalness as auxiliary tasks so that the neural network-
based model learned more features from a given dataset
[21]. Another researcher investigated transfer learning
methods, leveraging external data from related domains
[22].

As emotional dialogue is composed of sound and spoken
content, researchers have also investigated the
combination of acoustic features and language
information, built belief network-based methods of
identifying emotional key phrases, and assessed the
emotional salience of verbal cues from both phoneme
sequences and words [23, 24]. However, none of these
studies have utilized information from speech signals and
text sequences simultaneously in an end-to-end learning
neural network-based model to classify emotions.

MODELS

This section describes the methodologies that are applied
to the speech emotion recognition task. We start by
introducing the recurrent encoder model for the audio and
text modalities individually. We then propose a

multimodal approach that encodes both audio and textual
information simultaneously via a dual recurrent encoder.

Audio Recurrent Encoder (ARE)

Motivated by the architecture used in [25, 26], we build
an audio recurrent encoder (ARE) to predict the class of a
given audio signal. Once MFCC features have been
extracted from an audio signal, a subset of the sequential
features is fed into the

RNN (i.e., gated recurrent units (GRUSs)), which leads to
the formation of the network’s internal hidden state ht to
model the time series patterns. This internal hidden state
is updated at each time step with the input data xt and the
hidden state of the previous time step ht—1 as follows:

ht = f(ht—1,xt), (1)

where 19 is the RNN function with weight parameter 6, ht
represents the hidden state at t-th time step, and xt
represents the t-th MFCC features in x = {x1:ta}. After
encoding the audio signal x with the RNN, the last hidden
state of the RNN, hta, is considered to be the
representative vector that contains all of the sequential
audio data. This vector is then concatenated with another
prosodic feature vector, p, to generate a more informative
vector representation of the signal, e = concat{hta,p}. The
MFCC and the prosodic features are extracted from the
audio signal using the openSMILE toolkit [27], xt €ER39
and p €R35, respectively. Finally, the emotion class is
predicted by applying the softmax function to the vector
e. For a given audio sample i, we assume that yi is the true
label vector, which contains all zeros but contains a one
at the correct class, and y"i is the predicted probability
distribution from the softmax layer. The training objective
then takes the following form:

y'i = softmax(e|M + b),
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where e is the calculated representative vector of the audio
signal with dimensionality e ERd. The M eRdxC and the
bias b are learned model parameters. C is the total number
of classes, and N is the total number of samples used in
training. The upper part of Figure 1 shows the architecture
of the ARE model.

Text Recurrent Encoder (TRE)



We assume that speech transcripts can be extracted from
audio signals with high accuracy, given the advancement
of ASR technologies [8]. We attempt to use the processed
textual information as another modality in predicting the
emotion class of a given signal. To use textual
information, a speech transcript is tokenized and indexed
into a sequence of tokens using the Natural Language
Toolkit (NLTK) [28]. Each token is then passed through
a word-embedding layer that converts a word index to a
corresponding 300-dimensional vector that contains
additional contextual meaning between words. The
sequence of embedded tokens is fed into a text recurrent
encoder (TRE) in such a way that the audio MFCC
features are encoded using the ARE represented by
equation 1. In this case, xt is the t-th embedded token from
the text input. Finally, the emotion class is predicted from
the last hidden state of the text-RNN using the softmax
function.

We use the same training objective as the ARE
model, and the predicted probability distribution for the
target class is as follows:

y'i= softmax(hi.s! M + b),

where hlast is last hidden state of the text-RNN, hlast €
Rd, and the M €RdxC and bias b are learned model
parameters. The lower part of Figure 1 indicates the
architecture of the TRE model.

Multimodal Dual Recurrent Encoder (MDRE)

We present a novel architecture called the multimodal
dual recurrent encoder (MDRE) to overcome the
limitations of existing approaches. In this study, we
consider multiple modalities, such as MFCC features,
prosodic features and transcripts, which contain
sequential audio information, statistical audio information
and textual information, respectively. These types of data
are the same as those used in the ARE and TRE cases. The
MDRE model employs two RNNs to encode data from
the audio signal and textual inputs independently. The
audio-RNN encodes MFCC features from the audio
signal using equation 1. The last hidden state of the audio-
RNN is concatenated with the prosodic features to form
the final vector representation e, and this vector is then
passed through a fully connected neural network layer to
form the audio encoding vector A. On the other hand, the
text-RNN encodes the word sequence of the transcript
using equation 1. The final hidden states of the text-RNN
are also passed through another fully connected neural
network layer to form a textual encoding vector T.

Finally, the emotion class is predicted by applying the
softmax function to the concatenation of the vectors A and
T. We use the same training objective as the ARE model,
and the predicted probability distribution for the target
class is as follows:

A = gG(e); T = goe(hlast); _yAi =
softmax(concat(A,T)!M + b),

where g0,g00 is the feed-forward neural network with
weight parameter 0, and A, T are final encoding vectors
from the

audio-RNN and text-RNN, respectively. M €RdxC and
the bias b are learned model parameters.

Inspired by the concept of the attention mechanism used
in neural machine translation [29], we propose a novel
multimodal attention method to focus on the specific parts
of a transcript that contain strong emotional information,
conditioning on the audio information. Figure 2 shows the
architecture of the MDREA model. First, the audio data
and text data are encoded with the audio-RNN and text-
RNN using equation 1. We then consider the final audio
encoding vector e as a context vector. As seen in equation
5, during each time step t, the dot product between the
context vector e and the hidden state of the text-RNN at
each t-th sequence ht is evaluated to calculate a similarity
score at. Using this score at as a weight parameter, the
weighted sum of the sequences of the hidden state of the
text-RNN, ht, is calculated to generate an attention-
application vector Z. This attention-application vector is
concatenated with the final encoding vector of the
audioRNN A (equation 4), which will be passed through
the softmax function to predict the emotion class. We use
the same training objective as the ARE model, and the
predicted probability distribution for the target class is as
follows:

is as follows:
e hyl
o R = h et
expieTh ) Z .
exp ! (Z, AT M+ 6)
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¢ ¢ y"ij= softmax(concat,

where M €R4*Cand the bias b are learned model parameters.

EXPERIMENTAL SETUP AND DATASET



Dataset

In this study, two standard emotion data sets (RAVDESS
and TESS) and self-recorded custom data (custom-DB)
were used which cover a wide range of acted and
spontaneous emotions [3]. The Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS)
contains 24 professional actors (12 females, 12 male),
vocalizing two lexically-matched statements in a neutral
North American accent. Speech includes calm, happy,
sad, angry, fearful, surprise, and disgust expressions, and
song contains calm, happy, sad, angry, and fearful
emotions. The Toronto Emotional Speech Set (TESS) was
modelled on Northwestern University Auditory Test No.
6. A set of 200 target words were spoken by two actresses
(aged 26 and 64 years) and recordings were made of the
set portraying each of seven emotions (anger, disgust,
fear, happiness, pleasant surprise, sadness, and neutral).
There are 2800 stimuli in total. Both actresses are native
English speakers and have thresholds within the normal
range. The custom-DB dataset is an unbalanced noisy
dataset created by self-recording samples and converting
the raw file to 16 kHz and tagging the emotion to the
filename. In order to compare ASER results across data
sets a sampling rate of 16 kHz was chosen.

Audio Coding Format (Codec)

MPEG-2 Audio Layer Il (MP3) is a lossy audio codec,
introduced by Fraunhofer Institute in the year 1993 [4].
The audio compression is acquired by perceptual coding:
certain regions of the original sound signal, considered
beyond the auditory resolution ability, are discarded [6].
Next, the remaining information is stored in an effective
manner using Huffman-coding. The bit rates range from
8-320 kbit/s. In the current study, the bit data was encoded
at the following bitrates: 256, 192, 128, 96, 64, 24, 16, 8
kbit/s. MP3 is a popular codec and is freely available,
allowing for easy reproduction of results presented.

Speech emotion recogntion algorithms

Feature extraction

Previous studies have used the emobase feature set [3]
from the openSMILE toolkit. Feature extraction is one of
the most key aspects of ASER systems. It converts the
speech waveform to parametric representation at a very
low data rate. In this study, we have used the features
available in the LibROSA library such as mel-frequency
cepstral coefficient (MFCC), mel spectrogram frequency
(mel), chromagram [13]. LibROSA is a python open-

source library for music and audio file analysis. It helps
to extract the necessary audio features for developing
ASER systems. In audio file processing, the
melfrequency cepstrum (MFC) is defined as the short-
term power spectrum of a sound, based in a linear cosine
transform of a log power spectrum on a non-linear mel
scale of frequency. MFCC are coefficients that collective
build an MFC. MFCC is the most widely used feature for
emotion recognition from audio speech data sets.

Classification algorithm

In this study, we used support-vector machine (SVM),
multilayer perceptron (MLP) and Long shortterm
memory (LSTM) as our classification algorithms for
building our ASER models. We normalized our data
using a mean and standard deviation normalization which
was computed on the training set and applied to test set.
In machine learning hyper parameter optimization is an
act of choosing a set of optimal parameters for a learning
algorithm. A hyper parameter is a parameter whose value
is used to control the learning process. The traditional way
of performing hyper parameter optimization has been grid
search. In grid search we do an exhaustive searching
through a manually specified subset of hyper parameter
space of a learning algorithm. A grid search was
performed on each of the specified models using cross
validation on the training set as a performance matrix. The
best parameters of each of the classification algorithms
were used for the analysis. MLP is class of feed-forward
artificial neural network. The following parameters were
set to build the MLP classifier: activation function -
ReLU, learning rate (0.001), learning rate (adaptive),
batch size (1024), number of hidden layers — 300,
validation fraction (0.1) and maximum epoch (50). We
chose SVM with linear kernel and gamma value of 0.001.
LSTM is an artificial recurrent neural network
architecture for various classification applications. The
first part of the model is a feature extractor. The output is
normalized and fed to two uni-directional LSTM layers
[3], with a batch size of 64. Other parameters of the end-
to-end LSTM based ASER model are as follows: dropout
coefficient of 0.5 to prevent over-fitting, learning rate
0.001, epoch 1000.

EMPIRICAL RESULTS

Performance evaluation

As the dataset is not explicitly split beforehand into
training, development, and testing sets, we perform 5-fold
cross validation to determine the overall performance of



the model. The data in each fold are split into training,
development, and testing datasets (8:0.5:1.5,
respectively). After training the model, we measure the
weighted average precision (WAP) over the 5-fold
dataset. We train and evaluate the model 10 times per
fold, and the model performance is assessed in terms of
the mean score and standard deviation.

We examine the WAP values, which are shown in Table
1. First, our ARE model shows the baseline performance
because we use minimal audio features, such as the
MFCC and prosodic features with simple architectures.
On the other hand, the TRE model shows higher
performance gain compared to the ARE. From this result,
we note that textual data are informative in emotion
prediction tasks, and the recurrent encoder model is
effective in understanding these types of sequential data.
Second, the newly proposed model, MDRE, shows a
substantial performance gain. It thus achieves the state-
of-the-art performance with a WAP value of 0.718. This
result shows that multimodal information is a key factor
in affective computing. Lastly, the attention model,
MDREA, also outperforms the best existing research
results (WAP 0.690 to 0.688) [20]. However, the
MDREA model does not match the performance of the
MDRE model, even though it utilizes a more complex
architecture. We believe that this result arises because
insufficient data are available to properly determine the
complex model parameters in the MDREA model.
Moreover, we presume that this model will show better
performance when the audio signals are aligned with the
textual sequence while applying the attention mechanism.
We leave the implementation of this point as a future
research direction.

To investigate the practical performance of the proposed
models, we conduct further experiments with the
ASRprocessed transcript data (see “-ASR” models in
Table 1). The label accuracy of the processed transcripts
is 5.53% WER. The TRE-ASR, MDRE-ASR and
MDREA-ASR models reflect degraded performance
compared to that of the TRE, MDRE and MDREA
models. However, the performance of these models is still
competitive; in particular, the MDREASR model
outperforms the previous best-performing model, 3CNN-
LSTM10H (WAP 0.691 to 0.688).

Error analysis

We analyze the predictions of the ARE, TRE, and MDRE
models. The confusion matrix of each model. The ARE
model incorrectly classifies most instances of happy as
neutral (43.51%); thus, it shows reduced accuracy
(35.15%) in predicting the the happy class. Overall, most
of the emotion classes are frequently confused with the
neutral class. This observation is in line with the findings
of , who noted that the neutral class is located in the center
of the activation-valence space, complicating its
discrimination from the other classes prediction gains in
predicting the happy class when compared to the ARE
model (35.15% to 75.73%). This result seems plausible
because the model can benefit from the differences among
the distributions of words in happy and neutral
expressions, which gives more emotional information to
the model than that of the audio signal data. On the

CONCLUSION

In this paper, we propose a novel multimodal dual
recurrent encoder model that simultaneously utilizes text
data, as well as audio signals, to permit the better
understanding of speech data. Our model encodes the
information from audio and text sequences using dual
RNNs and then combines the information from these
sources using a feed-forward neural model to predict the
emotion class. Extensive experiments show that our
proposed model outperforms other state-of-the-art
methods in classifying the four emotion categories, and
accuracies ranging from 68.8% to 71.8% are obtained
when the model is applied to the IEMOCAP dataset. In
particular, it resolves the issue in which predictions
frequently incorrectly yield the neutral class, as occurs in
previous models that focus on audio features.

opposites of one another. The MDRE model compensates
for the weaknesses of the previous two models (ARE and
TRE) and benefits from their strengths to a surprising
degree. The values arranged along the diagonal axis show
that all of the accuracies of the correctly predicted class
have increased. Furthermore, the occurrence of the
incorrect “sad-to-happy” cases in the TRE model is
reduced from 16.20% to 9.15%.

In the future work, we aim to extend the modalities to
audio, text and video inputs. Furthermore, we plan to
investigate the application of the attention mechanism to
data derived from multiple modalities. This approach
seems likely to uncover enhanced learning schemes that



will increase performance in both speech emotion
recognition and other multimodal classification tasks.
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