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ABSTRACT 

Speech emotion recognition is a challenging task, and 

extensive reliance has been placed on models that use 

audio features in building well-performing classifiers. In 

this paper, we propose a novel deep dual recurrent 

encoder model that utilizes text data and audio signals 

simultaneously to obtain a better understanding of speech 

data. As emotional dialogue is composed of sound and 

spoken content, our model encodes the information from 

audio and text sequences using dual recurrent neural 

networks (RNNs) and then combines the information 

from these sources to predict the emotion class. This 

architecture analyzes speech data from the signal level to 

the language level, and it thus utilizes the information 

within the data more comprehensively than models that 

focus on audio features. Extensive experiments are 

conducted to investigate the efficacy and properties of the 

proposed model. Our proposed model outperforms 

previous state-of-the-art methods in assigning data to one 

of four emotion categories (i.e., angry, happy, sad and 

neutral) when the model is applied to the IEMOCAP 

dataset, as reflected by accuracies ranging from 68.8% to 

71.8%. 

INTRODUCTION 

Recently, deep learning algorithms have successfully 

addressed problems in various fields, such as image 

classification, machine translation, speech recognition, 

text-to-speech generation and other machine learning 

related areas [1, 2, 3]. Similarly, substantial 

improvements in performance have been obtained when 

deep learning algorithms have been applied to statistical 

speech processing [4]. These fundamental improvements 

have led researchers to investigate additional topics 

related to human nature, which have long been objects of 

study. One such topic involves understanding human 

emotions and reflecting it through machine intelligence, 

such as emotional dialogue models [5, 6]. 

In developing emotionally aware intelligence, the very 

first step is building robust emotion classifiers that display 

good performance regardless of the application; this 

outcome is considered to be one of the fundamental 

research goals in affective computing [7]. In particular, 

the speech emotion recognition task is one of the most 

important problems in the field of paralinguistics. This 

field has recently broadened its applications, as it is a 

crucial factor in optimal humancomputer interactions, 

including dialog systems. The goal of speech emotion 

recognition is to predict the emotional content of speech 

and to classify speech according to one of several labels 

(i.e., happy, sad, neutral, and angry). Various types of 

deep learning methods have been applied to increase the 

performance of emotion classifiers; however, this task is 

still considered to be challenging for several reasons. 

First, insufficient data for training complex neural 

network-based models are available, due to the costs 

associated with human involvement. Second, the 

characteristics of emotions must be learned from low- 

level speech signals. Feature-based models display limited 

skills when applied to this problem. 

To overcome these limitations, we propose a model that 

uses high-level text transcription, as well as low-level 

audio signals, to utilize the information contained within 

low-resource datasets to a greater degree. Given recent 

improvements in automatic speech recognition (ASR) 

technology [8, 3, 9, 10], speech transcription can be 

carried out using audio signals with considerable skill. 

The emothe emotion words contained in a sentence [11]. 
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RELATED WORK 

Classical machine learning algorithms, such as hidden 

Markov models (HMMs), support vector machines 

(SVMs), and decision tree-based methods, have been 

employed in speech emotion recognition problems [12, 

13, 14]. Recently, researchers have proposed various 

neural network-based architectures to improve the 

performance of speech emotion recognition. An initial 

study utilized deep neural networks (DNNs) to extract 

high-level features from raw audio data and demonstrated 

its effectiveness in speech emotion recognition [15]. With 

the advancement of deep learning methods, more 

complex neuralbased architectures have been proposed. 

Convolutional neural network (CNN)-based models have 

been trained on information derived from raw audio 

signals using spectrograms or audio features such as Mel- 

frequency cepstral coefficients (MFCCs) and low-level 

descriptors (LLDs) [16, 17, 18]. These neural network- 

based models are combined to produce higher-complexity 

models [19, 20], and these models achieved the best- 

recorded performance when applied to the IEMOCAP 

dataset. 

Another line of research has focused on adopting variant 

machine learning techniques combined with neural 

networkbased models. One researcher utilized the 

multiobject learning approach and used gender and 

naturalness as auxiliary tasks so that the neural network- 

based model learned more features from a given dataset 

[21]. Another researcher investigated transfer learning 

methods, leveraging external data from related domains 

[22]. 

As emotional dialogue is composed of sound and spoken 

content, researchers have also investigated the 

combination of acoustic features and language 

information, built belief network-based methods of 

identifying emotional key phrases, and assessed the 

emotional salience of verbal cues from both phoneme 

sequences and words [23, 24]. However, none of these 

studies have utilized information from speech signals and 

text sequences simultaneously in an end-to-end learning 

neural network-based model to classify emotions. 

MODELS 

This section describes the methodologies that are applied 

to the speech emotion recognition task. We start by 

introducing the recurrent encoder model for the audio and 

text modalities individually. We then propose a 

multimodal approach that encodes both audio and textual 

information simultaneously via a dual recurrent encoder. 

Audio Recurrent Encoder (ARE) 

Motivated by the architecture used in [25, 26], we build 

an audio recurrent encoder (ARE) to predict the class of a 

given audio signal. Once MFCC features have been 

extracted from an audio signal, a subset of the sequential 

features is fed into the 

RNN (i.e., gated recurrent units (GRUs)), which leads to 

the formation of the network’s internal hidden state ht to 

model the time series patterns. This internal hidden state 

is updated at each time step with the input data xt and the 

hidden state of the previous time step ht−1 as follows: 

ht = fθ(ht−1,xt), (1) 

where fθ is the RNN function with weight parameter θ, ht 

represents the hidden state at t-th time step, and xt 

represents the t-th MFCC features in x = {x1:ta}. After 

encoding the audio signal x with the RNN, the last hidden 

state of the RNN, hta, is considered to be the 

representative vector that contains all of the sequential 

audio data. This vector is then concatenated with another 

prosodic feature vector, p, to generate a more informative 

vector representation of the signal, e = concat{hta,p}. The 

MFCC and the prosodic features are extracted from the 

audio signal using the openSMILE toolkit [27], xt ∈R39 

and p ∈R35, respectively. Finally, the emotion class is 

predicted by applying the softmax function to the vector 

e. For a given audio sample i, we assume that yi is the true 

label vector, which contains all zeros but contains a one 

at the correct class, and yˆi is the predicted probability 

distribution from the softmax layer. The training objective 

then takes the following form: 

yˆi = softmax(e|M + b), 

N C 
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where e is the calculated representative vector of the audio 

signal with dimensionality e ∈Rd. The M ∈Rd×C and the 

bias b are learned model parameters. C is the total number 

of classes, and N is the total number of samples used in 

training. The upper part of Figure 1 shows the architecture 

of the ARE model. 

Text Recurrent Encoder (TRE) 
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We assume that speech transcripts can be extracted from 

audio signals with high accuracy, given the advancement 

of ASR technologies [8]. We attempt to use the processed 

textual information as another modality in predicting the 

emotion class of a given signal. To use textual 

information, a speech transcript is tokenized and indexed 

into a sequence of tokens using the Natural Language 

Toolkit (NLTK) [28]. Each token is then passed through 

a word-embedding layer that converts a word index to a 

corresponding 300-dimensional vector that contains 

additional contextual meaning between words. The 

sequence of embedded tokens is fed into a text recurrent 

encoder (TRE) in such a way that the audio MFCC 

features are encoded using the ARE represented by 

equation 1. In this case, xt is the t-th embedded token from 

the text input. Finally, the emotion class is predicted from 

the last hidden state of the text-RNN using the softmax 

function. 

We use the same training objective as the ARE 

model, and the predicted probability distribution for the 

target class is as follows: 

yˆi = softmax(hlas 
|M + b), 

where hlast is last hidden state of the text-RNN, hlast ∈ 

Rd, and the M ∈Rd×C and bias b are learned model 

parameters. The lower part of Figure 1 indicates the 

architecture of the TRE model. 

Multimodal Dual Recurrent Encoder (MDRE) 

We present a novel architecture called the multimodal 

dual recurrent encoder (MDRE) to overcome the 

limitations of existing approaches. In this study, we 

consider multiple modalities, such as MFCC features, 

prosodic features and transcripts, which contain 

sequential audio information, statistical audio information 

and textual information, respectively. These types of data 

are the same as those used in the ARE and TRE cases. The 

MDRE model employs two RNNs to encode data from 

the audio signal and textual inputs independently. The 

audio-RNN encodes MFCC features from the audio 

signal using equation 1. The last hidden state of the audio- 

RNN is concatenated with the prosodic features to form 

the final vector representation e, and this vector is then 

passed through a fully connected neural network layer to 

form the audio encoding vector A. On the other hand, the 

text-RNN encodes the word sequence of the transcript 

using equation 1. The final hidden states of the text-RNN 

are also passed through another fully connected neural 

network layer to form a textual encoding vector T. 

Finally, the emotion class is predicted by applying the 

softmax function to the concatenation of the vectors A and 

T. We use the same training objective as the ARE model, 

and the predicted probability distribution for the target 

class is as follows: 

A = gθ(e), T = g0θ(hlast), yˆi = 

softmax(concat(A,T)|M + b), 

where gθ,g0θ is the feed-forward neural network with 

weight parameter θ, and A, T are final encoding vectors 

from the 

audio-RNN and text-RNN, respectively. M ∈Rd×C and 

the bias b are learned model parameters. 

Inspired by the concept of the attention mechanism used 

in neural machine translation [29], we propose a novel 

multimodal attention method to focus on the specific parts 

of a transcript that contain strong emotional information, 

conditioning on the audio information. Figure 2 shows the 

architecture of the MDREA model. First, the audio data 

and text data are encoded with the audio-RNN and text- 

RNN using equation 1. We then consider the final audio 

encoding vector e as a context vector. As seen in equation 

5, during each time step t, the dot product between the 

context vector e and the hidden state of the text-RNN at 

each t-th sequence ht is evaluated to calculate a similarity 

score at. Using this score at as a weight parameter, the 

weighted sum of the sequences of the hidden state of the 

text-RNN, ht, is calculated to generate an attention- 

application vector Z. This attention-application vector is 

concatenated with the final encoding vector of the 

audioRNN A (equation 4), which will be passed through 

the softmax function to predict the emotion class. We use 

the same training objective as the ARE model, and the 

predicted probability distribution for the target class is as 

follows: 

is as follows: 
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where M ∈Rd×C and the bias b are learned model parameters. 

EXPERIMENTAL SETUP AND DATASET 



Dataset 

In this study, two standard emotion data sets (RAVDESS 

and TESS) and self-recorded custom data (custom-DB) 

were used which cover a wide range of acted and 

spontaneous emotions [3]. The Ryerson Audio-Visual 

Database of Emotional Speech and Song (RAVDESS) 

contains 24 professional actors (12 females, 12 male), 

vocalizing two lexically-matched statements in a neutral 

North American accent. Speech includes calm, happy, 

sad, angry, fearful, surprise, and disgust expressions, and 

song contains calm, happy, sad, angry, and fearful 

emotions. The Toronto Emotional Speech Set (TESS) was 

modelled on Northwestern University Auditory Test No. 

6. A set of 200 target words were spoken by two actresses 

(aged 26 and 64 years) and recordings were made of the 

set portraying each of seven emotions (anger, disgust, 

fear, happiness, pleasant surprise, sadness, and neutral). 

There are 2800 stimuli in total. Both actresses are native 

English speakers and have thresholds within the normal 

range. The custom-DB dataset is an unbalanced noisy 

dataset created by self-recording samples and converting 

the raw file to 16 kHz and tagging the emotion to the 

filename. In order to compare ASER results across data 

sets a sampling rate of 16 kHz was chosen. 

Audio Coding Format (Codec) 

MPEG-2 Audio Layer III (MP3) is a lossy audio codec, 

introduced by Fraunhofer Institute in the year 1993 [4]. 

The audio compression is acquired by perceptual coding: 

certain regions of the original sound signal, considered 

beyond the auditory resolution ability, are discarded [6]. 

Next, the remaining information is stored in an effective 

manner using Huffman-coding. The bit rates range from 

8-320 kbit/s. In the current study, the bit data was encoded 

at the following bitrates: 256, 192, 128, 96, 64, 24, 16, 8 

kbit/s. MP3 is a popular codec and is freely available, 

allowing for easy reproduction of results presented. 

Speech emotion recogntion algorithms 

Feature extraction 

Previous studies have used the emobase feature set [3] 

from the openSMILE toolkit. Feature extraction is one of 

the most key aspects of ASER systems. It converts the 

speech waveform to parametric representation at a very 

low data rate. In this study, we have used the features 

available in the LibROSA library such as mel-frequency 

cepstral coefficient (MFCC), mel spectrogram frequency 

(mel), chromagram [13]. LibROSA is a python open- 

source library for music and audio file analysis. It helps 

to extract the necessary audio features for developing 

ASER systems. In audio file processing, the 

melfrequency cepstrum (MFC) is defined as the short- 

term power spectrum of a sound, based in a linear cosine 

transform of a log power spectrum on a non-linear mel 

scale of frequency. MFCC are coefficients that collective 

build an MFC. MFCC is the most widely used feature for 

emotion recognition from audio speech data sets. 

Classification algorithm 

In this study, we used support-vector machine (SVM), 

multilayer perceptron (MLP) and Long shortterm 

memory (LSTM) as our classification algorithms for 

building our ASER models. We normalized our data 

using a mean and standard deviation normalization which 

was computed on the training set and applied to test set. 

In machine learning hyper parameter optimization is an 

act of choosing a set of optimal parameters for a learning 

algorithm. A hyper parameter is a parameter whose value 

is used to control the learning process. The traditional way 

of performing hyper parameter optimization has been grid 

search. In grid search we do an exhaustive searching 

through a manually specified subset of hyper parameter 

space of a learning algorithm. A grid search was 

performed on each of the specified models using cross 

validation on the training set as a performance matrix. The 

best parameters of each of the classification algorithms 

were used for the analysis. MLP is class of feed-forward 

artificial neural network. The following parameters were 

set to build the MLP classifier: activation function - 

ReLU, learning rate (0.001), learning rate (adaptive), 

batch size (1024), number of hidden layers – 300, 

validation fraction (0.1) and maximum epoch (50). We 

chose SVM with linear kernel and gamma value of 0.001. 

LSTM is an artificial recurrent neural network 

architecture for various classification applications. The 

first part of the model is a feature extractor. The output is 

normalized and fed to two uni-directional LSTM layers 

[3], with a batch size of 64. Other parameters of the end- 

to-end LSTM based ASER model are as follows: dropout 

coefficient of 0.5 to prevent over-fitting, learning rate 

0.001, epoch 1000. 

EMPIRICAL RESULTS 

Performance evaluation 

As the dataset is not explicitly split beforehand into 

training, development, and testing sets, we perform 5-fold 

cross validation to determine the overall performance of 



the model. The data in each fold are split into training, 

development, and testing datasets (8:0.5:1.5, 

respectively). After training the model, we measure the 

weighted average precision (WAP) over the 5-fold 

dataset. We train and evaluate the model 10 times per 

fold, and the model performance is assessed in terms of 

the mean score and standard deviation. 

We examine the WAP values, which are shown in Table 

1. First, our ARE model shows the baseline performance 

because we use minimal audio features, such as the 

MFCC and prosodic features with simple architectures. 

On the other hand, the TRE model shows higher 

performance gain compared to the ARE. From this result, 

we note that textual data are informative in emotion 

prediction tasks, and the recurrent encoder model is 

effective in understanding these types of sequential data. 

Second, the newly proposed model, MDRE, shows a 

substantial performance gain. It thus achieves the state- 

of-the-art performance with a WAP value of 0.718. This 

result shows that multimodal information is a key factor 

in affective computing. Lastly, the attention model, 

MDREA, also outperforms the best existing research 

results (WAP 0.690 to 0.688) [20]. However, the 

MDREA model does not match the performance of the 

MDRE model, even though it utilizes a more complex 

architecture. We believe that this result arises because 

insufficient data are available to properly determine the 

complex model parameters in the MDREA model. 

Moreover, we presume that this model will show better 

performance when the audio signals are aligned with the 

textual sequence while applying the attention mechanism. 

We leave the implementation of this point as a future 

research direction. 

To investigate the practical performance of the proposed 

models, we conduct further experiments with the 

ASRprocessed transcript data (see “-ASR” models in 

Table 1). The label accuracy of the processed transcripts 

is 5.53% WER. The TRE-ASR, MDRE-ASR and 

MDREA-ASR models reflect degraded performance 

compared to that of the TRE, MDRE and MDREA 

models. However, the performance of these models is still 

competitive; in particular, the MDREASR model 

outperforms the previous best-performing model, 3CNN- 

LSTM10H (WAP 0.691 to 0.688). 

 

 

 

Error analysis 

We analyze the predictions of the ARE, TRE, and MDRE 

models. The confusion matrix of each model. The ARE 

model incorrectly classifies most instances of happy as 

neutral (43.51%); thus, it shows reduced accuracy 

(35.15%) in predicting the the happy class. Overall, most 

of the emotion classes are frequently confused with the 

neutral class. This observation is in line with the findings 

of , who noted that the neutral class is located in the center 

of the activation-valence space, complicating its 

discrimination from the other classes prediction gains in 

predicting the happy class when compared to the ARE 

model (35.15% to 75.73%). This result seems plausible 

because the model can benefit from the differences among 

the distributions of words in happy and neutral 

expressions, which gives more emotional information to 

the model than that of the audio signal data. On the 

 

 
CONCLUSION 

In this paper, we propose a novel multimodal dual 

recurrent encoder model that simultaneously utilizes text 

data, as well as audio signals, to permit the better 

understanding of speech data. Our model encodes the 

information from audio and text sequences using dual 

RNNs and then combines the information from these 

sources using a feed-forward neural model to predict the 

emotion class. Extensive experiments show that our 

proposed model outperforms other state-of-the-art 

methods in classifying the four emotion categories, and 

accuracies ranging from 68.8% to 71.8% are obtained 

when the model is applied to the IEMOCAP dataset. In 

particular, it resolves the issue in which predictions 

frequently incorrectly yield the neutral class, as occurs in 

previous models that focus on audio features. 

opposites of one another. The MDRE model compensates 

for the weaknesses of the previous two models (ARE and 

TRE) and benefits from their strengths to a surprising 

degree. The values arranged along the diagonal axis show 

that all of the accuracies of the correctly predicted class 

have increased. Furthermore, the occurrence of the 

incorrect “sad-to-happy” cases in the TRE model is 

reduced from 16.20% to 9.15%. 

In the future work, we aim to extend the modalities to 

audio, text and video inputs. Furthermore, we plan to 

investigate the application of the attention mechanism to 

data derived from multiple modalities. This approach 

seems likely to uncover enhanced learning schemes that 



will increase performance in both speech emotion 

recognition and other multimodal classification tasks. 
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