

MALWARE DETECTION USING MACHINE

LEARNING

SARANYA.C1
Assistant Professor

Dept of Computer Science &
Engineering

RVS College of Engineering &
Technology,

 Coimbatore
c.saranyait@gmail.com

YUVABHARATHI.V4
712819104724

Dept of Computer Science &
Engineering

RVS College of Engineering &

Technology,
Coimbatore

yuvabharathi001vp@gmail.com

KAVINRAJ S.B2
712819104717

Dept of Computer Science &
Engineering

RVS College of Engineering &

Technology,
Coimbatore

kavinkavi641@gmail.com

KARTHICK.B5
712819104710

Dept of Computer Science &
Engineering

RVS College of Engineering &
Technology,
Coimbatore

karthickbrs281@gmail.com

SNEHA.P3
712819104712

Dept of Computer Science &
Engineering

RVS College of Engineering &

Technology,
Coimbatore

snehap1892002@gmail.com

Abstract—Malware detection plays a crucial role in

cyber-security with the increase in malware growth and

advancements in cyber-attacks. Malicious software applications,

malware are the primary source of many security problems.

These intentionally manipulate malicious applications intend to

perform unauthorized activities on behalf of their originators on

the host machines for various reasons such as stealing advanced

technologies and intellectual properties, governmental acts of

revenge, and tampering sensitive information. Malware detection

methods rely on signature databases, including malicious

instruction patterns in today's practice. The signature databases

are used for matching against a signature generated from a

newly encountered executable. Nevertheless, more efficient

mitigation methods are needed due to the fast expansion of

malicious software on the Internet and their self-modifying

abilities like polymorphic and metamorphic malware. We propose

stacked bidirectional long short-term memory (Stacked BiLSTM)

and generative pre-trained transformer based (GPT-2) models

for detecting malicious code online without installing any

antivirus software.The proposed algorithms, namely the

bidirectional long short-term memory (BiLSTM) model and the

generative pre-trained transformer 2 (GPT-2) detect malicious

code pieces by examining assembly instructions obtained from

static analysis results of Portable Executable (PE) files. Our

BiLSTM model processes a sequence of input elements across

time to learn and analyse the patterns. In contrast, the

transformers-based GPT-2 model enables modelling long

dependencies between input sequence elements with parallel

sequence processing in which sequential data constituents can

connect with others simultaneously.

Keywords—Malware detection, Cybersecurity, GPT-2,

BiLSTM, Malware attacks.

I. INTRODUCTION

The objective of MalFree is to develop a cyber

security firmware that can effectively detect and prevent
malware attacks on computer systems using advanced

machine learning techniques. The firmware will have the

following objectives :To develop a large dataset of malware

samples and non-malware samples for training and

evaluating the Stacked BiLSTM and GPT-2 models. To

train the Stacked BiLSTM model to learn the temporal

sequence of network traffic data and the GPT-2 model to

generate contextualized representations of network traffic

data. Tocombine the Stacked BiLSTM and GPT-2 models to
develop a hybrid model for detecting and preventing

malware attacks on computer systems. To evaluate the

performance of the hybrid model in terms of detection

accuracy, false positive rate, and speed compared to

traditional signature-based detection systems and the

Transformer-based system.

 To develop a firmware that can run the hybrid model to

detect and prevent malware attacks on computer systems.

The objective of the proposed firmware is to provide an

advanced and effective solution for detecting and preventing

malware attacks on computer systems using the state-of-the-

art machine learning techniques of Stacked BiLSTM and
GPT-2. The hybrid model will leverage the power of both

models to learn the temporal sequence and contextualized

representations of network traffic data, enabling it to detect

and prevent new and unknown malware variants with high

accuracy and low false-positive rates. The firmware will

provide real-time protection against detected threats,

minimizing the impact of a malware attack on computer

systems.

II. RELATED WORKS

All the correlated works that have been done that are

related to the current problem are follows. [1]Caviglione,
L.; Choras, M.; Corona, I.; Janicki, A.; Mazurczyk, W.;
Pawlicki, M.; Wasielewska, K. Tight Arms Race: Overview
of Current Malware Threats and Trends in Their Detection.

IEEEAccess 2021, 9, 5371–5369..[3]Cannarile, A.;
Dentamaro, V.; Galantucci, S.; Iannacone, A.; Impedovo, D.;
Pirlo, G. Comparing Machine learning and Shallow Learning
Techniquesfor API Calls Malware Prediction: A Study.

Appl. Sci. 2022, 12, 1645.[5]Urooj, U.; Al-Rimy, B.A.S.;
Zainal, A.; Ghaleb, F.A.; Rassam, M.A. Ransomware
Detection Using the Dynamic Analysis and Machine
Learning: A Survey and Research Directions. Appl. Sci.
2022, 12, 172.

III. PROBLEM DEFINITON

Thorough Malware (malicious software) is

asignificant threat to computer systems, mobile devices, and

networks worldwide. Malware can cause various types of

damage, including stealing sensitive data, hijacking systems,

and disrupting critical services. Traditional signature-based

malware detection systems are not effective in detecting

new and advanced malware variants, leading to an increased

need for more sophisticated techniques.
 Malware mitigation is based on comparing those

signatures with the signature of an executable file of newly

encountered files for malicious vs. benign detection. The

signature-based malware detection is straightforward and

fast, yet it may be ineffective against sophisticated malware

or overlook relations. Another drawback of such detection

methods is that the signatures database grows too quickly to

keep up with the growth rate of new malware. Traditional

signature-based detection systems rely on a database of

known malware signatures to identify threats. However,

new and unknown malware can evade detection by these
systems, making them ineffective in preventing advanced

threats.

The DL is the end-to-end learning approach, which

refers to training a possibly complex learning system

represented by a single model, DNN. The network

represents the complete target system, automating feature

extraction nearly without preprocessing. In this project, we

extract assembly codes using an open-source disassembler

objdump.

This tool creates sequences as documents or

sentences. Those data are then used for model development,
given that the assembly code provides accurate information

for obtaining critical coding patterns. For this, we employ

the disassembler output as input data to build a language

model assisted with word embedding in a similar way to

processing natural language.

IV. PROPOSED SYSTEM

The proposed system, Mal Free, is a cyber security

online firmware that uses advanced machine learning

techniques, specifically Stacked BiLSTM and GPT-2 based

language models, to detect and prevent malware attacks.

The proposed algorithms, namely proposes a Stacked

BiLSTM and GPT-2 based machine learning language

models for detecting malicious code. Developed language

models using assembly instructions extracted from .text

sections of malicious and benign Portable Executable (PE)

files. BiLSTM model processes a sequence of input

elements across time to learn and analyze the patterns. In
contrast, the transformers-based GPT-2 model enables

modeling long dependencies between input sequence

elements with parallel sequence processing in which

sequential data constituents can connect with others

simultaneously. Then use the perspective of NLP modeling

by DL to extract similar characteristics, i.e., syntactic and

semantic characteristics of assembly instructions. This

models were designed to effectively learn and extract the

features and characteristics of assembly language and

classify the polarity of files.

A. MalFreeWebTool

In order to simulate a real world scenario, a three-

tiered web architecture is developed. This architecture

consisted of web-servers, application servers, and a database

server. A front load balancer is tasked with handling and

distributing clients requests to the appropriate web servers.

An internal load balancer is used to connect web servers to

the application servers and to distribute requests among the

application servers, and the application servers are all

connected to a single database server. In this module we are

going to build the online malware analysis tool using Python
and Flask Framework. It is a cloud-based online tool that

provides users with a report on system or device security

threats. MalFree is a web service that scans registered

device from a remote server. MalFree can help in protecting

the user’s device from getting infected with malware and

other web security threats. Online Malfree scanning of

system or laptops is widely used to protect system or laptops

from viruses, spyware, malware, rootkits, trojans, phishing

attacks, spam attacks and many more types of web attacks.

It consists of Malware Model Building and Prediction Phase

using Machine learning Algorithms. The malware report
will provide with a list of all affected files including the

possible reasons for detection.

B. Malware Classification

In this module, we developed malware detection

approaches using Natural Language Processing(NLP)
techniques with ML algorithms. The proposed algorithms,

namely the BiLSTM model and GPT-2 detect malicious

code pieces by examining assembly instructions obtained

from static analysis results of PE Files. Our BiLSTM model

processes a sequence of input elements across time to learn

and analyze the patterns. In contrast, the transformers-based

GPT 2 model enables modeling long dependencies between

input sequence elements with parallel sequence processing.

C. Device Registration

In this module users of this system registered with this

system. After Login the system with registered username

and password. End users configure their system with this

module using their system MAC and IP.

D. Attacker Model

In this module the attacker attack is to download

and install malware on the victim machine. There are two

types of techniques used by attackers to perform malware

attacks, namely: (1) Social Engineering: using psychological

manipulations and decoys to trick the victims into

authorizing the downloading and installation of malware;

and (2) Drive-by Download: designing a web page that
contains malicious code to trigger the downloading and

installation of malware automatically.

E. Malware Scanner

MalFree offers two types of online scans for

computer. One is the Antivirus Scan that detects known
malware and other malicious programs hiding in your

computer. The other one is the Prevent Scan that detects

malware threats that are new and have unknown

characteristics. it scans your computer for suspicious files. It

is regularly updated to detect real-time threats. The one-

click scan feature is present and shows blacklist status.

F. Performance Analysis

In this module the method of evaluating model

performance is to calculate False Positive Rates in different

runs (FPR = FP/FP+TN, where FP is the number of false

positives and TN is the number of true negatives).The FPR
shows the probability of a false alarm, i.e., a benign file

detected as malware.

V. ALGORITHMS USED

In this work, we propose the use of two models,

Stacked BiLSTM and GPT-2. We trained on a large dataset

of malware samples to learn how to recognize common

malware behaviors such as command-and-control

communication, data exfiltration, and network

reconnaissance.

When the model detects suspicious behavior in the
network traffic, it sends an alert to the GPT-2 model, which

generates a natural language alert message that can be

displayed to the user or sent to a security operations center

(SOC).

A. GPT-2

The GPT-2 component of MalFree is responsible

for generating alerts and notifications based on the output of

the Stacked BiLSTM model. When the model detects

suspicious behavior in the network traffic, it sends an alert

to the GPT-2 model, which generates a natural language

alert message that can be displayed to the user or sent to a

security operations center (SOC).

The system operates in real-time and is designed to

be highly adaptable and flexible, working across multiple

platforms and environments. It uses a combination of

supervised and unsupervised learning approaches to identify

both known and unknown malware threats.
The proposed system works as follows:

 Data Collection: MalFree collects data from

multiple sources, including file systems, network

traffic, and system logs.

 Feature Extraction: MalFree extracts relevant

features from the collected data using techniques

such as static and dynamic analysis.

 Stacked BiLSTM: MalFree uses a Stacked

BiLSTM neural network to analyze the extracted

features and detect malware attacks. The Stacked

BiLSTM model is trained on a large dataset of
known malware samples, enabling it to accurately

identify new and previously unknown malware

threats.

 GPT-2: MalFree also uses a GPT-2 language

model to generate natural language descriptions of

detected malware threats, making it easier for cyber

security analysts to understand and respond to

these threats.

Prevention and Response: MalFree takes proactive

measures to prevent malware attacks by blocking

suspicious files and network traffic. It also generates

alerts and notifications to alert cyber security analysts of

potential threats, enabling them to take immediate action
to prevent further damage.

VI. SOFTWARE REQUIREMENTS

A. Python 3.7.4

Python is a high-level, interpreted, interactive and
object-oriented scripting language. Python is designed to be

highly readable. It uses English keywords frequently where

as other languages use punctuation, and it has fewer

syntactical constructions than other languages. Python is a

must for students and working professionals to become a

great Software Engineer specially when they are working in

Web Development Domain..

B. TensorFlow

TensorFlow is an end-to-end open-source platform

for machine learning. It has a comprehensive, flexible

ecosystem of tools, libraries, and community resources that

lets researchers push the state-of-the-art in ML, and gives

developers the ability to easily build and deploy ML-

powered applications..

C. Pandas

pandas is a fast, powerful, flexible and easy to use
open source data analysis and manipulation tool, built on top

of the Python programming language.pandas is a Python

package that provides fast, flexible, and expressive data

structures designed to make working with "relational" or

"labeled" data both easy and intuitive. It aims to be the

fundamental high-level building block for doing practical,

real world data analysis in Python.

D. NumPy

NumPy, which stands for Numerical Python, is a

library consisting of multidimensional array objects and

a collection of routines for processing those arrays.

Using NumPy, mathematical and logical operations on

arrays can be performed.

E. Matplotlib

Matplotlib is a comprehensive library for creating

static, animated, and interactive visualizations in Python.

Matplotlib makes easy things easy and hard things possible.

Matplotlib is a plotting library for the Python

programming language and its numerical mathematics

extension NumPy. It provides an object-oriented API for

embedding plots into applications using general-purpose
GUI toolkits like Tkinter, wxPython, Qt, or GTK.

F. Scikit Learn

scikit-learn is a Python module for machine

learning built on top of SciPy and is distributed under the 3-

Clause BSD license.

 It features various classification, regression and

clustering algorithms including support-vector machines,

random forests, gradient boosting, k-means and DBSCAN,

and is designed to interoperate with the Python numerical

and scientific libraries NumPy and SciPy.

VII. OUTPUT SCREENS

Fig 1. User Registration Screen

Fig 2. Admin Login Screen

Fig 3.User login Screen

Fig 4 . Home screen

Fig 5 . Trojan attack

Fig6 . Path select /directory screen

Fig 5. Malware attack

Fig 7. No.of files attack screen

Fig 8. Output/malfree activated

Fig 9. Output / malware removal

VIII. CONCLUSION

Malicious software applications, or malware, are the

primary source of many security problems. These

intentionally manipulative malicious applications intend to

perform unauthorized activities on behalf of their originators

on the host machines for various reasons such as stealing

advanced technologies and intellectual properties,

governmental acts of revenge, and tampering sensitive
information, to name a few.

This project introduces MalFree, an interactive

visualization platform for hybrid analysis and diagnosis of

malware. This approach first represents the behavioral

properties of the major malware classes (such as Trojan or

backdoor), aiming to capture the common visual signatures

of these malicious applications. MalFree implements a web-

based prototype for demonstrating our approach to

analyzing 60 malware samples from seven different

classes .We focused on operation codes and operands,

instead of opcodes only, to develop BiLSTM models and the
decoder-based transformers GPT-2 models.

The resulting accuracy rate 95.4% shows that it is

possible to classify malicious and benign assembly codes by

GPT-2 with a custom pre-trained model. By experimental

results, we showed that using byte streams of different

formats may contribute to performance improvements. This

also allowed for faster detection of malware classes,

permitting a quicker response in anti-malware cyber security

applications.
Overall, the application of this project can help

identify malware types faster, prevent from malware attack

and more accurately than contemporary approaches which
can help save time when defending against malwares.

REFERENCES

[1] Caviglione, L.; Choras, M.; Corona, I.; Janicki, A.; Mazurczyk, W.;

Pawlicki, M.; Wasielewska, K. Tight Arms Race: Overview of

Current Malware Threats and Trends in Their Detection. IEEE Access

2021, 9, 5371–5396

[2] Cannarile, A.; Dentamaro, V.; Galantucci, S.; Iannacone, A.;
Impedovo, D.; Pirlo, G. Comparing Machine learning and Shallow

Learning Techniques for API CallsMalware Prediction: A Study.

Appl. Sci. 2022, 12, 1645.

[3] Urooj, U.; Al-Rimy, B.A.S.; Zainal, A.; Ghaleb, F.A.; Rassam, M.A.

Ransomware Detection Using the Dynamic Analysis and Machine
Learning: A Survey and Research Directions. Appl. Sci. 2022, 12,

172.

[4] Hansen, S.S.; Larsen, T.M.T.; Stevanovic, M.; Pedersen, J.M. An
approach for detection and family classification of malware based on

behavioral analysis. In Proceedings of the 2016 International
Conference on Computing, Networking and Communications

(ICNC), Kauai, HI, USA, 15–18 February 2016; pp. 1–5

[5] Morgan, S. Cybercrime Damages $6 Trillion by 2021. 2017.
Available online:

https://cybersecurityventures.com/hackerpocalypsecybercrime-

report-2016/ (accessed on 15 July 2021)

[6] Villalba, L.J.G.; Orozco, A.L.S.; Vivar, A.L.; Vega, E.A.A.; Kim, T.-

H. Ransomware Automatic Data Acquisition Tool. IEEE Access

2018, 6, 55043–55051

[7] Sahay, S.K.; Sharma, A.; Rathore, H. Evolution of Malware and Its

Detection Techniques. In Advances in Intelligent Systems and

Computing; Springer: Singapore, 2020; Volume 933, pp. 139–150

[8] Kakisim, A.G.; Nar, M.; Sogukpinar, I. Metamorphic malware
identification using engine-specific patterns based on co-opcode

graphs. Comput. Stand. Interfaces 2019, 71, 103443.

[9] Vignau, B.; Khoury, R.; Halle, S. 10 Years of IoT Malware: A
Feature-Based Taxonomy. In Proceedings of the 2019 IEEE 19th

International Conference on Software Quality, Reliability and

Security Companion

[10] Asam, M.; Hussain, S.J.; Mohatram, M.; Khan, S.H.; Jamal, T.; Zafar,

A.; Khan, A.; Ali, M.U.; Zahoora, U. Detection of exceptional
malware variants using deep boosted feature spaces and machine

learning. Appl. Sci. 2021, 11, 10464.

[11] I. Santos, Y. K. Penya, J. Devesa, and P. G. Garcia, “N-grams-based

filesignaturesformalwaredetection,”2009.

[12] E. Konstantinou, “Metamorphic virus: Analysis and detection,”

2008,TechnicalReportRHUL-MA-2008-2,

[13] Y. Ye, D. Wang, T. Li, and D. Ye, “Imds: intelligent malware
detectionsystem,” in KDD, P. Berkhin, R. Caruana, and X. Wu, Eds.

ACM,2007,pp.1043–1047.

[14] M. Chandrasekaran, V. Vidyaraman, and S. J. Upadhyaya,

“Spycon:Emulating user activities to detect evasive spyware,” in

IPCCC.IEEEComputerSociety,2007,pp.502–509.

[15] S. N. N. Kwang Loong and S. K. K. Mishra, “De novo SVM classi-

fication of precursor microRNAs from genomic pseudo hairpins
usingglobalandintrinsicfoldingmeasures.”Bioinformatics,January2007

.

[16] K.Rieck,T.Holz,C.Willems,P.Düssel,andP.Laskov,“Learningand
classification of malware behavior,” in DIMVA ’08: Proceedings of

the5th international conference on Detection of Intrusions and
Malware,and Vulnerability Assessment.Berlin, Heidelberg: Springer-

Verlag,2008,pp.108–125.

[17] I. Yoo, “Visualizing Windows executable viruses using self-
organizingmaps,”inVizSEC/DMSEC’04:Proceedings

ofthe2004ACMworkshopon Visualization and data mining for

computer security. New York,NY,USA:ACM,2004,pp.82–89.

https://cybersecurityventures.com/hackerpocalypsecybercrime-

	I. introduction
	II. related works
	III. Problem definiton
	IV. Proposed system
	A. MalFreeWebTool
	B. Malware Classification
	C. Device Registration
	D. Attacker Model
	E. Malware Scanner
	F. Performance Analysis

	V. Algorithms used
	A. GPT-2

	VI. software requirements
	A. Python 3.7.4
	B. TensorFlow
	C. Pandas
	D. NumPy
	E. Matplotlib
	F. Scikit Learn

	VII. output screens
	VIII. Conclusion
	References

