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Abstract—Malware detection plays a crucial role in 

cyber-security with the increase in malware growth and 

advancements in cyber-attacks. Malicious software applications, 

malware are the primary source of many security problems. 

These intentionally manipulate malicious applications intend to 

perform unauthorized activities on behalf of their originators on 

the host machines for various reasons such as stealing advanced 

technologies and intellectual properties, governmental acts of 

revenge, and tampering sensitive information. Malware detection 

methods rely on signature databases, including malicious 

instruction patterns in today's practice. The signature databases 

are used for matching against a signature generated from a 

newly encountered executable. Nevertheless, more efficient 

mitigation methods are needed due to the fast expansion of 

malicious software on the Internet and their self-modifying 

abilities like polymorphic and metamorphic malware. We propose 

stacked bidirectional long short-term memory (Stacked BiLSTM) 

and generative pre-trained transformer based (GPT-2) models 

for detecting malicious code online without installing any 

antivirus software.The proposed algorithms, namely the 

bidirectional long short-term memory (BiLSTM) model and the 

generative pre-trained transformer 2 (GPT-2) detect malicious 

code pieces by examining assembly instructions obtained from 

static analysis results of Portable Executable (PE) files. Our 

BiLSTM model processes a sequence of input elements across 

time to learn and analyse the patterns. In contrast, the 

transformers-based GPT-2 model enables modelling long 

dependencies between input sequence elements with parallel 

sequence processing in which sequential data constituents can 

connect with others simultaneously. 
 

Keywords—Malware detection, Cybersecurity, GPT-2, 

BiLSTM, Malware attacks. 

I. INTRODUCTION 

The objective of MalFree is to develop a cyber 

security firmware that can effectively detect and prevent 
malware attacks on computer systems using advanced 

machine learning techniques. The firmware will have the 

following objectives :To develop a large dataset of malware 

samples and non-malware samples for training and 

evaluating the Stacked BiLSTM and GPT-2 models. To 

train the Stacked BiLSTM model to learn the temporal 

sequence of network traffic data and the GPT-2 model to 

generate contextualized representations of network traffic 

data. Tocombine the Stacked BiLSTM and GPT-2 models to 
develop a hybrid model for detecting and preventing 

malware attacks on computer systems. To evaluate the 

performance of the hybrid model in terms of detection 

accuracy, false positive rate, and speed compared to 

traditional signature-based detection systems and the 

Transformer-based system. 

 To develop a firmware that can run the hybrid model to 

detect and prevent malware attacks on computer systems. 

The objective of the proposed firmware is to provide an 

advanced and effective solution for detecting and preventing 

malware attacks on computer systems using the state-of-the-

art machine learning techniques of Stacked BiLSTM and 
GPT-2. The hybrid model will leverage the power of both 

models to learn the temporal sequence and contextualized 

representations of network traffic data, enabling it to detect 

and prevent new and unknown malware variants with high 

accuracy and low false-positive rates. The firmware will 

provide real-time protection against detected threats, 

minimizing the impact of a malware attack on computer 

systems. 

 

II. RELATED WORKS 

All the correlated works that have been done that are 

related to the current problem are follows.  [1]Caviglione, 
L.; Choras, M.; Corona, I.; Janicki, A.; Mazurczyk, W.; 
Pawlicki, M.; Wasielewska, K. Tight Arms Race: Overview 
of Current Malware Threats and Trends in Their Detection. 

IEEEAccess 2021, 9, 5371–5369..[3]Cannarile, A.; 
Dentamaro, V.; Galantucci, S.; Iannacone, A.; Impedovo, D.; 
Pirlo, G. Comparing Machine learning and Shallow Learning 
Techniquesfor API Calls Malware Prediction: A Study. 

Appl. Sci. 2022, 12, 1645.[5]Urooj, U.; Al-Rimy, B.A.S.; 
Zainal, A.; Ghaleb, F.A.; Rassam, M.A. Ransomware 
Detection Using the Dynamic Analysis and Machine 
Learning: A Survey and Research Directions. Appl. Sci. 
2022, 12, 172. 



III. PROBLEM DEFINITON 

Thorough Malware (malicious software) is 

asignificant threat to computer systems, mobile devices, and 

networks worldwide. Malware can cause various types of 

damage, including stealing sensitive data, hijacking systems, 

and disrupting critical services. Traditional signature-based 

malware detection systems are not effective in detecting 

new and advanced malware variants, leading to an increased 

need for more sophisticated techniques. 
 Malware mitigation is based on comparing those 

signatures with the signature of an executable file of newly 

encountered files for malicious vs. benign detection. The 

signature-based malware detection is straightforward and 

fast, yet it may be ineffective against sophisticated malware 

or overlook relations. Another drawback of such detection 

methods is that the signatures database grows too quickly to 

keep up with the growth rate of new malware. Traditional 

signature-based detection systems rely on a database of 

known malware signatures to identify threats. However, 

new and unknown malware can evade detection by these 
systems, making them ineffective in preventing advanced 

threats.  

The DL is the end-to-end learning approach, which 

refers to training a possibly complex learning system 

represented by a single model, DNN. The network 

represents the complete target system, automating feature 

extraction nearly without preprocessing. In this project, we 

extract assembly codes using an open-source disassembler 

objdump.  

This tool creates sequences as documents or 

sentences. Those data are then used for model development, 
given that the assembly code provides accurate information 

for obtaining critical coding patterns. For this, we employ 

the disassembler output as input data to build a language 

model assisted with word embedding in a similar way to 

processing natural language.  
 

IV. PROPOSED SYSTEM 

The proposed system, Mal Free, is a cyber security 

online firmware that uses advanced machine learning 

techniques, specifically Stacked BiLSTM and GPT-2 based 

language models, to detect and prevent malware attacks. 

The proposed algorithms, namely proposes a Stacked 

BiLSTM and  GPT-2 based machine learning language 

models for detecting malicious code. Developed language 

models using assembly instructions extracted from .text 

sections of malicious and benign Portable Executable (PE) 

files. BiLSTM model processes a sequence of input 

elements across time to learn and analyze the patterns. In 
contrast, the transformers-based GPT-2 model enables 

modeling long dependencies between input sequence 

elements with parallel sequence processing in which 

sequential data constituents can connect with others 

simultaneously. Then use the perspective of NLP modeling 

by DL to extract similar characteristics, i.e., syntactic and 

semantic characteristics of assembly instructions. This 

models were designed to effectively learn and extract the 

features and characteristics of assembly language and 

classify the polarity of files. 
 

A. MalFreeWebTool 

In order to simulate a real world scenario, a three-

tiered web architecture is developed. This architecture 

consisted of web-servers, application servers, and a database 

server. A front load balancer is tasked with handling and 

distributing clients requests to the appropriate web servers. 

An internal load balancer is used to connect web servers to 

the application servers and to distribute requests among the 

application servers, and the application servers are all 

connected to a single database server. In this module we are 

going to build the online malware analysis tool using Python 
and Flask Framework. It is a cloud-based online tool that 

provides users with a report on system or device security 

threats. MalFree is a web service that scans registered 

device from a remote server. MalFree can help in protecting 

the user’s device from getting infected with malware and 

other web security threats. Online Malfree scanning of 

system or laptops is widely used to protect system or laptops 

from viruses, spyware, malware, rootkits, trojans, phishing 

attacks, spam attacks and many more types of web attacks. 

It consists of Malware Model Building and Prediction Phase 

using Machine learning Algorithms. The malware report 
will provide with a list of all affected files including the 

possible reasons for detection. 
 

B. Malware  Classification 

In this module, we developed malware detection 

approaches using Natural Language Processing(NLP) 
techniques with ML algorithms. The proposed algorithms, 

namely the BiLSTM model and GPT-2 detect malicious 

code pieces by examining assembly instructions obtained 

from static analysis results of PE Files. Our BiLSTM model 

processes a sequence of input elements across time to learn 

and analyze the patterns. In contrast, the transformers-based 

GPT 2 model enables modeling long dependencies between 

input sequence elements with parallel sequence processing. 

 

C. Device Registration 

In this module users of this system registered with this 

system. After Login the system with registered username 

and password. End users configure their system with this 

module using their system MAC and IP. 

 

D. Attacker Model 

In this module the attacker attack is to download 

and install malware on the victim machine. There are two 

types of techniques used by attackers to perform malware 

attacks, namely: (1) Social Engineering: using psychological 

manipulations and decoys to trick the victims into 

authorizing the downloading and installation of malware; 

and (2) Drive-by Download: designing a web page that 
contains malicious code to trigger the downloading and 

installation of malware automatically. 
 

E. Malware  Scanner 

MalFree offers two types of online scans for 

computer. One is the Antivirus Scan that detects known 
malware and other malicious programs hiding in your 



computer. The other one is the Prevent Scan that detects 

malware threats that are new and have unknown 

characteristics. it scans your computer for suspicious files. It 

is regularly updated to detect real-time threats. The one-

click scan feature is present and shows blacklist status. 
 

F. Performance  Analysis 

In this module the method of evaluating model 

performance is to calculate False Positive Rates in different 

runs (FPR = FP/FP+TN, where FP is the number of false 

positives and TN is the number of true negatives).The FPR 
shows the probability of a false alarm, i.e., a benign file 

detected as malware. 

 

V. ALGORITHMS USED 

In this work, we propose the use of two  models, 

Stacked BiLSTM and GPT-2. We trained on a large dataset 

of malware samples to learn how to recognize common 

malware behaviors such as command-and-control 

communication, data exfiltration, and network 

reconnaissance. 

When the model detects suspicious behavior in the 
network traffic, it sends an alert to the GPT-2 model, which 

generates a natural language alert message that can be 

displayed to the user or sent to a security operations center 

(SOC). 

 

A. GPT-2 

The GPT-2 component of MalFree is responsible 

for generating alerts and notifications based on the output of 

the Stacked BiLSTM model. When the model detects 

suspicious behavior in the network traffic, it sends an alert 

to the GPT-2 model, which generates a natural language 

alert message that can be displayed to the user or sent to a 

security operations center (SOC). 

The system operates in real-time and is designed to 

be highly adaptable and flexible, working across multiple 

platforms and environments. It uses a combination of 

supervised and unsupervised learning approaches to identify 

both known and unknown malware threats. 
The proposed system works as follows: 

 Data Collection: MalFree collects data from 

multiple sources, including file systems, network 

traffic, and system logs. 

 Feature Extraction: MalFree extracts relevant 

features from the collected data using techniques 

such as static and dynamic analysis. 

 Stacked BiLSTM: MalFree uses a Stacked 

BiLSTM neural network to analyze the extracted 

features and detect malware attacks. The Stacked 

BiLSTM model is trained on a large dataset of 
known malware samples, enabling it to accurately 

identify new and previously unknown malware 

threats. 

 GPT-2: MalFree also uses a GPT-2 language 

model to generate natural language descriptions of 

detected malware threats, making it easier for cyber 

security analysts to understand and respond to 

these threats. 

Prevention and Response: MalFree takes proactive 

measures to prevent malware attacks by blocking 

suspicious files and network traffic. It also generates 

alerts and notifications to alert cyber security analysts of 

potential threats, enabling them to take immediate action 
to prevent further damage. 

 

VI. SOFTWARE REQUIREMENTS 

 

A. Python 3.7.4 

Python is a high-level, interpreted, interactive and 
object-oriented scripting language. Python is designed to be 

highly readable. It uses English keywords frequently where 

as other languages use punctuation, and it has fewer 

syntactical constructions than other languages. Python is a 

must  for students and working professionals to become a 

great Software Engineer specially when they are working in 

Web Development Domain.. 

 

B. TensorFlow 

TensorFlow is an end-to-end open-source platform 

for machine learning. It has a comprehensive, flexible 

ecosystem of tools, libraries, and community resources that 

lets researchers push the state-of-the-art in ML, and gives 

developers the ability to easily build and deploy ML-

powered applications.. 
 

C. Pandas 

pandas is a fast, powerful, flexible and easy to use 
open source data analysis and manipulation tool, built on top 

of the Python programming language.pandas is a Python 

package that provides fast, flexible, and expressive data 

structures designed to make working with "relational" or 

"labeled" data both easy and intuitive. It aims to be the 

fundamental high-level building block for doing practical, 

real world data analysis in Python. 

 

D. NumPy 

NumPy, which stands for Numerical Python, is a 

library consisting of multidimensional array objects and 

a collection of routines for processing those arrays. 

Using NumPy, mathematical and logical operations on 

arrays can be performed. 

 

E. Matplotlib 

Matplotlib is a comprehensive library for creating 

static, animated, and interactive visualizations in Python. 

Matplotlib makes easy things easy and hard things possible. 

Matplotlib is a plotting library for the Python 

programming language and its numerical mathematics 

extension NumPy. It provides an object-oriented API for 

embedding plots into applications using general-purpose 
GUI toolkits like Tkinter, wxPython, Qt, or GTK. 

 



F. Scikit Learn 

scikit-learn is a Python module for machine 

learning built on top of SciPy and is distributed under the 3-

Clause BSD license. 

 It features various classification, regression and 

clustering algorithms including support-vector machines, 

random forests, gradient boosting, k-means and DBSCAN, 

and is designed to interoperate with the Python numerical 

and scientific libraries NumPy and SciPy. 
 

 

VII. OUTPUT SCREENS 

 
Fig 1. User Registration Screen 

 

 
Fig 2. Admin Login Screen 

 

 
Fig 3.User login Screen  

 
Fig 4 . Home screen 

 

 

 
Fig 5 . Trojan attack 

 

 

 
Fig6 . Path  select /directory screen 

 

 

 
Fig 5. Malware attack  

 

 
Fig 7. No.of  files attack screen  

 

 

 

 
Fig 8. Output/malfree activated 

 

 



 
Fig 9. Output / malware removal  

 

VIII. CONCLUSION  

Malicious software applications, or malware, are the 

primary source of many security problems. These 

intentionally manipulative malicious applications intend to 

perform unauthorized activities on behalf of their originators 

on the host machines for various reasons such as stealing 

advanced technologies and intellectual properties, 

governmental acts of revenge, and tampering sensitive 
information, to name a few. 

This project introduces MalFree, an interactive 

visualization platform for hybrid analysis and diagnosis of 

malware. This approach first represents the behavioral 

properties of the major malware classes (such as Trojan or 

backdoor), aiming to capture the common visual signatures 

of these malicious applications. MalFree implements a web-

based prototype for demonstrating our approach to 

analyzing 60 malware samples from seven different 

classes .We focused on operation codes and operands, 

instead of opcodes only, to develop BiLSTM models and the 
decoder-based transformers GPT-2 models. 

The resulting accuracy rate 95.4% shows that it is 

possible to classify malicious and benign assembly codes by 

GPT-2 with a custom pre-trained model. By experimental 

results, we showed that using byte streams of different 

formats may contribute to performance improvements. This 

also allowed for faster detection of malware classes, 

permitting a quicker response in anti-malware cyber security 

applications. 
Overall, the application of this project can help 

identify malware types faster, prevent from malware attack 

and more accurately than contemporary approaches which 
can help save time when defending against malwares. 
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