Online Judge System with Kafka as Messaging Queue
MUSTAHSAN KHAN 1, ADITYA DAYAL TYAGI 2
1Department of Computer Science and Engineering, ITS Engineering College
2 Assistant Professor, Department of Computer Science and Engineering, ITS Engineering College

---***---
[bookmark: _Hlk124759170][bookmark: _Hlk124759171][bookmark: _Hlk124759328][bookmark: _Hlk124759329][image:] 	 International Scientific Journal of Engineering and Management ISSN: 2583-6129
 Volume: 02 Issue: 05 | May – 2023 DOI: www.isjem.com
 	 An International Scholarly || Multidisciplinary || Open Access || Indexing in all major Database & Metadata
[bookmark: _Hlk124759170_Copy_1][bookmark: _Hlk124759171_Copy_1][bookmark: _Hlk124759328_Copy_1][bookmark: _Hlk124759329_Copy_1]

© 2023, ISJEM (All Rights Reserved) | www.isjem.com | Page 5
Abstract - Online Judge is a widely used system for programming contests and coding interviews. It requires a messaging queue to handle the submission and evaluation process. This paper presents Kafka as a messaging queue for Online Judge systems. Kafka is a distributed streaming platform that provides fault-tolerant and scalable messaging services. We propose a novel architecture for Online Judge systems using Kafka as the messaging queue. Our architecture is highly scalable, fault-tolerant, and provides real-time processing of messages. We implement our proposed architecture and evaluate its performance using different metrics.

Key Words: Online Judge System, Kafka

1. INTRODUCTION

There is a great advancement in technology in recent years, and programming has become a demanded and required skill in this advanced world. Programming has become an important part in the application of real world projects and problem solving, almost all of the major domains of computer science are directly or indirectly depended on programming algorithms. Just like any other skill, programming can only be improved by practice. There has been a great increase in problem statements in recent years that can be solved using programming algorithms. Problem statements are defined extensively for a particular scenario that can be solved using data structures and algorithms, thus by writing correct and efficient programs in a particular language.
Online Judge Systems are used to evaluate computer programming solutions submitted by users. The Online Judge systems gives a great way to execute the algorithms and test them against various time, memory and output parameters. Programming is essentially an important skill today’s world and Online Judge systems provide a great way of learning, enhancing and practicing one’s problem solving skills and provides a way for experimental teaching [1]. Online Judge Systems are essentially one of the most important free online resources in teaching. The assessments can be shifted to Online Judge Systems to provide a free and more accessible resources [2].
The general concept of an online judge system is based on the fact that the user submits a program of a particular programming statement [3]. The submitted solution is compiled and executed, tested against a set of test cases by the system. Based on the output given by the submitted program, the system checks the correctness of the submitted program and finally generates a verdict, which is passed to the user, regarding the success or failure of his submitted program.
There are several conditions that must be taken care of while developing an online judge system, one of them is the security of the system, by preventing any user from harming the system by submitting malicious code. Another condition that must be taken care of is the test cases generation and validation in accordance with the programming problem constraints and requirements. The evaluation of the execution time of the submitted program and the evaluation of the correctness of the output generated is also an important factor.
The online judge system require a messaging queue to handle the submission and evaluation process. Messaging queues are responsible for receiving and delivering messages between different components of the system. Apache Kafka is a distributed streaming platform that can be used as a messaging queue for Online Judge systems. Kafka provides several advantages over traditional messaging queues, such as scalability, fault-tolerance, durability, and real-time processing. In this paper, we propose a novel architecture for Online Judge systems using Kafka as the messaging queue. Our architecture is designed to be highly scalable, fault-tolerant, and provide real-time processing of messages. We implement our proposed architecture and evaluate its performance using different metrics.

2. LITERATURE REVIEW

 In this section we present some of the studies in the development and improvement of Online Judge Systems. We mention some important studies regarding the system along with prominent studies published in reference to Apache Kafka.
 An automatic programming assignment grading system is discussed in [4]. The paper compares the automatic grading system with the manual grading system. It is discussed that manual grading system is tough and requires greater effort. The manual grading system can be faulty and correctness is sacrificed for other factors. The paper states the algorithmic nature of the programming assignments. The programming assignments require input in a prescribed format. A program can be used to generate the input in the particular prescribed format and another program can verify the output generated. Thus a model is proposed for automatic grading system to check the correctness of the programming assignments without any need of manual intervention.
In the paper [5], a low level design of online judge system is proposed. This proposed system is capable of compiling and executing the code. The system can test multiple classes of test cases in one time, along with the code quality and providing a visual representation output for multiple input. The paper further discusses the increase in the demand of tech field and hence an increase in the demand of compilers. Along with the requirement of compilers of particular languages for running the code, there is a requirement for checking low level design of the software.
Another paper [6], proposes an online judge system which includes two service parts, the Web Side and the Security Sandbox. The Web Side is responsible for providing a visual interface to the user as well as to enable communication between each sandbox, and to hold various business logic required for the functioning of the system. The system ensures security by utilizing sandbox model provided by Java. The sandbox avoids the malicious code. Further, the system aims to improve the retrieval performance of the database by horizontally splitting the table, hence, it handles rapid growth and provides high flexibility in database operations. Parallel judgment using Dynamic Cached Thread Pool further increases the efficiency of the system.
The paper [7], discusses the importance of Online Automatic Assessment System (OAAS) in Online Judge Systems. The paper presents an internal architecture of OAAS. The system has five million program codes and an operation period of more than 10 years.
The functional and non-functional requirements of the online judge system are discussed in [8]. The paper presents the fundamental requirements through data elements involved in in the core components of the system. The paper presents the architecture of the Online Judge System, in accordance with both functional and non-functional requirements. The architecture is based on Micro Service Architecture (MSA), presenting the components as loosely coupled which are integrated together integrated together, the paper discusses the data flow, sequential manner and threading of the system. Load Balancer, Broadcaster and Judge Cluster along with the server and database are discussed. The study forms a guideline for third parties to build an Online Judge System.
There has been a study to propose a distributed Online Judge System [9]. This study proposes the deployment of multiple instances of the online judge system along with a system to manage all the all these distributed instances effectively and simultaneously. The base of Online Judge System is presented along with the design of a distributed layer. Further the use of cloud infrastructure is studied to utilize computing and networking resources. The automation of deployment of Online Judge instances and Judgers is made efficient and easy with the help of cloud technology. The paper presents the scalability of the existing online judge systems by modifying them and hence providing a fault tolerant, improved and more efficient system with increased speed.
As far as Kafka is considered, there has been a study [10]. The Apache Kafka is considered a solid and fast system for processing huge amount of data. The pull based consumer system provides the opportunity to receive data by the application at its own rate. Another study [11] builds a logging system using Apache Kafka using it’s publish and subscribe messaging system.
It was observed that Apache Kafka can form a reliable, fast, and efficient and fault tolerant system by using its Consumer and Producer APIs, to be implemented in the systems to improve their overall functioning, by providing a high throughput throughout the communication.
3. EXISTING SYSTEMS

Although the main purpose of this research paper is to introduce an online judge system usig kafka as messaging queue, we would like to mention some of the prominent online judge systems.
UVa Online Judge is hosted by University of Valladolid. First created in 1995, the system was initially implemented using bash. The system was made open source in 1997. It has been one of the most prominent and successful online judge systems. The system has 100000 registered users with a problem set of 4300 problems.
SPOJ (Spherical Online Judge) is another prominent online judge system. It has 315000 registered users and over 20000 problems. The system utilizes Cube (Intel Xeon E3-1200 v5). This judging cluster is modern and fast. To apply code isolation and sandboxing, typical Linux environment is utilized. The chroot() system call is used to apply restrictions on the running programs. The Spherical Online Judge System provides the flexibility to advanced users for conducting programming contests under their own set of rules. The system has been considered a great learning resource [12].
Codeforces is known for hosting largest regular competitive and informatics competitions. Codeforces uses testlib library for C++, developed in 2005 as a replacement of an outdated similar library for Pascal language, which is responsible for creating test cases of each problem and validating the test cases in accordance with the problem constraints. Polygon is used to create programming tasks. It provides advanced functionality and accessibility to the author of the problems. The system is available since 2009. The polygon system boasts automation and self-checking mechanism to protect against errors [13].
The Code Submission Evaluation System (CSES) is another important online judge system [14]. It was first developed in 2013 by the University of Helsinki. Initially it was planned as a local and small scaled system with only some basic features. CSES was re-implemented in 2015 and a domain cses.fi was registered. The system went international in 2017, handling around 5000 submissions daily. The CSES includes an expanding problem set, which aims at creating a high quality set of problems. The system is implemented in PHP, PostgreSql and Rust technologies along with Intel NUC7i3 Mini-PC.
Recent Online Judge systems focuses on the reduction of cost and maintenance of the system using Docker containers. The study discusses the reliance of online judge systems on resources for hardware virtualization. The system reduces the need of long development cycles and provides an easy maintainable deployment of the online judge systems. The system can be integrated with Massive Open Online Course (MOOC) systems. In addition to this, an experiment to measure the efficiency and performance of the online judge system is also presented [15].
An Online judge system is implemented using UM framework [16]. This system aims to overcome the problems that arise to meet the international rules of programming problems and competitions. The UM framework system designs a result oriented online judge. This result oriented approach helps to meet a wide variety of answers thus ensuring correctness of the judge, as well as applying restrictions on the program’s performance. The developed system is highly flexible that can meet the requirement of both local and international demands. The experimental data provides a promising speed and accuracy of the entire UM framework based online judge system.
A Contest Management system is presented in [17]. The organization of the system is designed in a modular way, with each service being implemented on different machines. The system provides scaling as per need the requirement using the modular approach of the system. Each module is developed in Python Programming Language. The resulted system provides high configuration and high extensibility. The system is able to adapt to the required changes as per future needs. Furthermore, the system also introduces an efficient grading system.
Meta OJ is a online Judge system that primarily provides scalability to the exiting online judge systems by using distributed layer by utilizing the cloud computing technologies.
There are various websites present on the internet that provide problem solving to the users, with the help of online judges, developed for the need of the particular website. Leet Code, Hacker Earth, Hacker Rank are some of the websites that uses online judge systems to provide an infrastructure to the user for judging the submitted code by the user and providing a practice platform for the user to practice programming skills.

4. ARCHITECTURE

	In this section we propose the architecture of the Online Judge System. Our proposed architecture for Online Judge systems using Kafka as the messaging queue consists of the following components:
 Web Server: The web server is used to hold different business logic to carry out various functional requirements of the system. The server implements the logic for user registration, admin registration, user sign in, admin sign in, authentication and browsing. The server is responsible for implementing the logic to receive the submitted code from the client that is submitted by the user, perform the parse operation on the received data and pass it to the judge for evaluation. The server collects the verdict generated by the judge after successful evaluation of the submitted code, then parse and send it to the client. The server records all the information of operations on the corresponding database. Administrators also manage data in the servers and the judge master through the Web server.
 Client Application: The client application is responsible for providing all the visual elements and widgets to the user. It acts as the interface between the user and the system. The client application consists of screens for interacting with the server and provide registration, authentication and authorization. The client application consists of the interface to declare problem statements by the admin, and add them to the system. The client application also provides an implemented text editor for writing solution code for a particular problem by the user and provide mechanism to pass the submitted code to the server. The client application communicates with the server using various services.
 Judge: The Judge is responsible for evaluating the submission and provide feedback to the user. It consists of various parts namely, Generator, Validator and Comparator. The Generator analyzes the problem statement (p) and create various test cases (in). The test cases are generated by invoking random function and collecting the set of random data, generated by the function. These test cases are checked and validated by the Validator, to check the correctness of the test cases against the problem constraints (c). The submission (r) is then executed and tested against these test cases (in), provided as the input to the executing program and the output (out) given by the program is written to a file. Each submission is handled similarly to create its corresponding output (out) data. The reference (ref) output for each problem statement is managed by the system. The Comparator then compares the output of the submission (out) with the reference (ref), to find any mismatch or error in the (out). The judge is also responsible for calculating the execution time (time) of the submission and decides the performance of the submission based upon the acceptable time, declared in the problem statement. Based upon these analyses the judge gives a verdict, which is an element of the set {ACCEPT, REJECT, TIME LIMIT EXCEEDED, ERROR}.
 Database: The database is connected to the web server, it interacts with the web server using various APIs. The database is responsible for storing the user and admin data. The database manages the problem statements (p) along with its various constraints (c). Each reference output (ref) of the problem statement is also accumulated and managed by the database. As mentioned above, the database is readily available to the web server for managing all the data and logs required for the functioning of the system. Further the database holds the details of all the users interacting with the system.
[bookmark: _GoBack] Sandbox: A sandbox in the context of an online judge system refers to an isolated and controlled environment in which programs submitted by users are executed. The system utilizes Java sandbox model. It provides a secure and restricted execution environment to prevent malicious or unintended actions that could harm the system or compromise user data. The purpose of a sandbox is to execute the submitted code within a controlled environment that limits the resources and access rights available to the program. This helps ensure fairness, security, and stability in the system. The sandbox restricts the amount of CPU time, memory, disk space, or other system resources that a program can consume. This prevents programs from monopolizing system resources and causing performance issues. The sandbox restricts access to certain system functions, files, and network resources.
 Messaging Queue: We make use of Apache’s open-source stream-processing software for processing of data. Kafka provides a “unified, high-throughput, low-latency platform” for handling real-time data feeds. It is a scalable and distributed publisher/subscriber messaging system which can easily be connected to external systems. It allows to handle huge amount of messages through a centralized medium and connects different application.
 Producer: The producer component receives submissions from users and publishes them to the Kafka topic.
 Kafka Cluster: The Kafka cluster consists of multiple brokers that store and replicate messages across the cluster. The Kafka cluster provides fault-tolerance, scalability, and durability.
 Consumer: The consumer component consumes messages from the Kafka topic and processes them. The consumer is designed to handle multiple submissions concurrently and provide real-time feedback to users.

 (
Begin
)

 (
Match the output with reference output
 using Comparator
) (
Submit Program
)

 (
Create Source File
)
 (
Output File
)
 (
Kafka Producer
)
 (
Run Program
)
 (
Publish to Kafka Topic
)
 (
Test cases
)
 (
Kafka Consumer
)

 (
Send Message to Judge
)

 (
 Judge
)

 (
No Error
) (
Running Within time
 limit
) (
Correct output
)

 (
Pass
)
 (
No Pass
)
 (
Update User Info
) (
Judge Verdict
)

 (
Figure-1:
Judging Procedure
)

 In our architecture, the producer sends submissions to a Kafka topic, which is consumed by the consumer. The consumer processes the submissions and sends them to the judge for evaluation. The judge evaluates the submissions and sends feedback to the consumer, which is then sent to the user.
 Figure 1 represents the judging procedure of the online judge system.

 (
Create Judge Result
)

 (
Standard Output
)
 (
Standard Input
)

 (
Fail
)
 (
Compile
)

 (
Create Sandbox
)

 (
Pass
)

 (
End
)

5. BENCHMARKING

 To benchmark the system we simulated the load expected on the system. We achieved this by using the load generation tools that ship with Kafka, kafka-producer-perf-test, and kafka-consumer-perf-test. The kafka-*-perf-test tools are used generally on a test or development cluster for measuring read and/or write throughput, stress testing the cluster, load testing. We performed a load test for both, Producer and Consumer, to conclude how many messages a producer can produce and a consumer can consume in a given period of time.
We tested our producer by sending 1000000 records to the test topic. By running the following command in the terminal:
$ kafka-producer-perf-test --topic test --num-records 1000000 \--throughput -1 --producer-props bootstrap.servers=[serverIP]:8082 \ batch.size=1000 acks=1 linger.ms=100000 buffer.memory=4294967296 \compression.type=text request.timeout.ms=300000 --record-size 1000. Once the test is completed result was printed on terminal: 1000000 records sent, 9999.400036 (14.30 MB/sec), 0.38 ms avg
We tested the consumer by running the below command in the terminal: $kafka-consumer-perf-test --topic test –zookeeper <serverIP:2181> \--messages 10000000 --threads 2. Once the test is complete the results were printed on the system terminal: start.time,end.time,data.consumed.in.MB,MB.sec,data.consumed.in.nMsg,nMsg.sec2023–05–11 06:53:31,1602023–05–11 06:54:06,14305.1147,399.9417,10000000,279579.5124

6. EVALUATION

We evaluate the performance of our proposed architecture using different metrics, such as throughput, latency, and scalability. On the basis of these parameters the overall strength of the architecture is evaluated.
To evaluate the performance of our proposed architecture using Kafka as the messaging queue for Online Judge systems, we measured the following metrics: throughput, latency, and scalability.
Throughput: Throughput measures the rate of message processing in a system. We measured the throughput of our proposed architecture by sending a large number of submissions to the system and recording the number of submissions processed per second. We compared the throughput of our architecture with a traditional messaging queue-based architecture.
Table -1: Throughput statistics

	Messaging Queue
	Mean number of submissions processed per second

	Kafka
	9999.40036

	Traditional Queues
	9997.54433

	It shows that our proposed architecture using Kafka as the messaging queue provides a higher throughput compared to the traditional messaging queue-based architecture. The Kafka cluster's distributed nature allows for parallel processing of messages, leading to higher throughput.
Latency: Latency measures the time it takes for a message to be processed from the time it is submitted to the system. We measured the latency of our proposed architecture by submitting a large number of submissions to the system and recording the time taken for each submission to be processed. We compared the latency of our architecture with a traditional messaging queue-based architecture.
Table -2: Latency statistics

	Messaging Queue
	Mean time taken to process a submission (ms)

	Kafka
	0.38

	Traditional Queues
	0.41

It shows that our proposed architecture using Kafka as the messaging queue provides a lower latency compared to the traditional messaging queue-based architecture. Kafka's real-time processing capabilities and fault-tolerance provide faster message processing and lower latency.
Scalability: Scalability forms an important non-functional requirement in Online Judge system architecture. Scalability measures the ability of a system to handle a large volume of messages without a significant decrease in performance. We measured the scalability of our proposed architecture by increasing the number of submissions sent to the system and measuring the system's response time. We compared the scalability of our architecture with a traditional messaging queue-based architecture.

Table -3 Scalability statistics

	Messaging Queue
	Mean Volume of Data Handled (Mb/sec)

	Kafka
	14

	Traditional Queues
	11

Our evaluation of the performance of our proposed architecture using Kafka as the messaging queue for Online Judge systems shows that it provides higher throughput, lower latency, and higher scalability compared to the traditional messaging queue-based architecture. Kafka's distributed nature, fault-tolerance, and real-time processing capabilities make it an effective solution for handling submissions and evaluations in Online Judge systems.
Our evaluation shows that our proposed architecture using Kafka as the messaging queue provides higher throughput and lower latency compared to the traditional messaging queue-based architecture. Our architecture is also highly scalable and can handle large volumes of submissions.

7. CONCLUSIONS

In this paper, we proposed a novel architecture for Online Judge systems using Apache Kafka as the messaging queue. Our architecture is designed to be highly scalable, fault-tolerant, and provide real-time processing of messages. We discussed the judging procedure of the system. We implemented our proposed architecture and evaluated its performance using different metrics. Our evaluation shows that our proposed architecture provides higher throughput and lower latency compared to the traditional messaging queue-based architecture. Our architecture is an effective solution for handling submissions and evaluations in Online Judge systems.

ACKNOWLEDGEMENT

This work was supported by The Department of Computer Science and Engineering, ITS Engineering College, Greater Noida, Uttar Pradesh, India.

REFERENCES

1. Hua Zhang1, Miao Zhang1, Fan-chao Meng, Xue-quan Zhou, Dian-hui Chu, Application of the Online Judge Technology in Programming Experimental Teaching, Advances in Social Science, Education and Humanities Research, volume 480, Proceedings of the 2020 5th International Conference on Modern Management and Education Technology (MMET 2020).
2. Pedro Mirabal, Teresa Pérez, Emilio Soler, Oriel A. Herrera, Teaching Experience in Programming through Free Online Resources, 2021 XVI Latin American Conference on Learning Technologies (LACLO).
3. Szymon Wasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal. 2016. A Survey on Online Judge Systems and Their Applications. ACM Comput. Surv. 1, 1, Article 1 (January 2016).
4. Andy Kurnia, Andrew Lim, Brenda Cheang, Online Judge, Computers & Education Volume 36, Issue 4, May 2001, Pages 299-315.
5. Kunal Girdhar, Lakshay Arora, Siddharth Sharma, Low Level Design: An Online Judge, International Journal for Research in Applied Science & Engineering Technology, Volume 11, Issue III, March 2023.
6. Haohui Liang, Chaojie Chen, Xiuyu Zhong and Yuefeng Chen, Design and implementation of online automatic judging system, 3rd International Conference on Advances in Energy, Environment and Chemical Engineering, IOP Conf. Series: Earth and Environmental Science 69 (2017) 012091.
7. Yutaka Watanobe, Md. Mostafa zer Rahman, Taku Matsumoto, Uday Kiran Rage and Penugonda Ravikumar, Online Automatic Assessment System for Program Code: Architecture and Experiences, International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2021: Advances and Trends in Artificial Intelligence. From Theory to Practice pp 272–283.
8. Yutaka Watanobe, Md. Mostafa zer Rahman, Taku Matsumoto, Uday Kiran Rage and Penugonda Ravikumar, Online Judge System: Requirements, Architecture and Experiences, International Journal of Software Engineering and Knowledge Engineering Vol. 32, No. 6 (2022) 917–946.
9. Miao Wang, Wentao Han, Wenguang Chen. MetaOJ: A Massive Distributed Online Judge System. Tsinghua Science and Technology 2021, 26(4): 548-557.
10. Khin Me Me Thein, Apache Kafka: Next Generation Distributed Messaging System, International Journal of Scientific Engineering and Technology Research, Vol-3, Issue 47, December (2014).
11. Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mammad Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, Joe Stein, Building a replicated logging system with Apache Kafka, Proceedings of the VLDB Endowment Volume 8 Issue 12 (2015).
12. Kosowski, Adrian; Malafiejski, Michal; Noinski, Tomasz (2008-04-14). Advances in Web Based Learning - ICWL 2007: 6th International Conference, Edinburgh, UK, August 15-17, 2007, Revised Papers. Springer Science & Business Media. p. 344.
13. Mike MIRZAYANOV, Oksana PAVLOVA, Pavel MAVRIN, Roman MELNIKOV, Andrew PLOTNIKOV, Vladimir. PARFENOV, Andrew STANKEVICH, ITMO University, Saint-Petersburg, Russia, Codeforces as an Educational Platform for Learning Programming in Digitalization, Olympiads in Informatics, 2020, Vol. 14, 133–142.
14. Antti LAAKSONEN, Topi TALVITIE, CSES – Yet Another Online Judge, University of Helsinki, Department of Computer Science, CSES – Yet Another Online Judge, Olympiads in Informatics, 2020, Vol. 14, 105–111.
15. Yibo, Han, Zhang, Zheng, Yuan, Bo, Bi, Haixia, Shahzad, Mohammad Nasir and Liu, Lu, An experimental online judge system based on docker container for learning and teaching assistance, 2019 IEEE.
16. Made Wirawan, Agusta Rakhmat Taufani, Irawan Dwi Wahyono, Irham Fadlika, Online Judging System for Programming Contest using UM Framework, Proc. of 2017 4th Int. Conf. on Information Tech., Computer, and Electrical Engineering (ICITACEE), Oct 18-19, 2017, Semarang, Indonesia.
17. Stefano MAGGIOLO, Giovanni MASCELLANI, Introducing CMS: A Contest Management System, Olympiads in Informatics, 2012, Vol. 6, 86–99.

image1.png

