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Abstract—Particle Swarm Optimization (PSO) is a type of
optimization algorithm that is based on the behavior of social
animals. It represents a collection of possible solutions to an
optimization problem as a swarm of particles that move through
the parameter space. The movement of the particles is guided by
their own performance and the performance of their neighbors,
leading to an optimized solution. In this paper we are solved
linear programming problems, transportation problem using
Particle Swarm Optimization and applying on a Data Set.

Index Terms—Particle Swarm Optimization (PSO), Swarm In-
telligence, Current Position, Current Velocity, Individual Perfect
or (Pbest), Global Best (Gbest).

I. INTRODUCTION

Dr. Kennedy and Dr. Eberhart. first proposed the
based on populations probabilistic search approach known
as Particle Swarm Optimization (PSO) in 1995. PSO’s
fundamental concept was influenced by how creatures interact
with one another, such as when flocks of birds or schools
of fish, and it provides an alternative approach to solving
non-linear optimization problems. PSO depends on a group
interaction method observed in animals such as birds and
insects when they search for food or migrate. The algorithm
simulates the sharing of individual information among group
members to identify the positive direction in a search space.
If one member of the group finds a positive direction, the
others will quickly follow, reflecting the behavior seen in
natural social systems.
The PSO algorithm uses the concept of a swarm and particles
to solve optimization problems by simulating the behavior
of animals. Every particle in the population represents a
potential solution and traverses the search space, starting
from a random location and moving in random directions.
The particles remember their best past locations and those
of their neighbors, and constantly modified their location
and velocity based on the best locations found by the entire
population. The particles communicate and transmit favorable
positions to each other. The search process continues until
the swarm converges towards the maximum of the fitness
function g : Rn → R.

The PSO algorithm is growing in popularity due to its ease
of implementation and ability to converge quickly on a practi-
cal solution to optimization problems. In comparison to other
optimization techniques, it is quicker, less expensive, and more
effective. Additionally, PSO only has a few parameters that
may be changed. PSO is a great tool for solving optimization
problems because of this. PSO is a good choice for problems
of the non-convex, continuous, discrete, integer variable type.

II. THEORY

A. PSO with optimization problems
Optimization is the process of selecting the best solution

from a set of alternatives based on one or more criteria
specified by the user. This is typically done mathematically
by representing the objective as a parameterized function f
that depends on D parameters. The optimization problem is
to determine the parameter values that maximize the objective
function f . The objective function is also known as the “fitness
function” and the optimization process involves finding the
values that lead to the maximum of the fitness function.
The focus will be on maximizing the function in the following:

Given g : RD → R
Find zopt|g (xopt) ≥ g(z) ∀z ∈ RD

(1)

The search (or parameter) space is the D-dimensional domain
of the function RD and each of its points, denoted by the
vector of coordinates x represents possible solutions to the
problems, with zopt being the best option i.e, the one that
maximizes f.
In the context of optimization, Particle Swarm Optimization
(PSO) was inspired by the social behavior of fish schools and
bird flocks. Each particle in PSO is viewed as a point in an
N-dimensional space and its position is adjusted based on its
own velocity and the information from other particles in the
swarm. The information used to update the particle’s position
includes:

• The present location of the particle
• The particle speed at the moment
• The difference between a particle’s present location and

its most well-known location (Pbest)
• The distance between the present location and the

swarm’s overall best-known position (Gbest).

B. PSO Algorithm
In PSO, Consider a population (swarm) size of N with po-

sition vector Xi
t = [x1, x2, x3, ...., xn]

T where T is transpose,
and velocity vector Vi

t = [v1, v2, v3, ...., vn]
T at t iteration

for each one of the i particle that composes it. These vectors
are updated through the dimension j according to following
equation:

Xt+1
i,j = Xt

i,j +Vt+1
i,j (2)

where vi is the vector containing the velocity components of
the i-th particle and t and t+1 denote two further iterations of
the algorithms. The three terms that make up the velocity vec-
tors, which control how particles move about the search space,
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are as follows: the first term, defined as inertia or momentum,
keeps track of the prior flow direction to stop the particle
from quickly changing direction; the second term, referred to
as the cognitive component, explains particles tendencies to
return to their previously identified optimal locations; the last
term, known as the social component, indicates a particle’s
tendency to migrate to the optimal location for the entire
swarm (or of a local neighborhood of the particle, depending
on whether a global or partial PSO is implemented). Based on
these considerations, the velocity of the i-th particle is defined
as:

V t+1
i,j = V t

i,j +c1.r
t
1

(
pbestti,j −Xt

i,j

)
+c2.r

t
2

(
gbesttj −Xt

i,j

)
(3)

In particle swarm optimization, the “personal best” (pbest)
and “global best” (gbest) are terms used to refer to the best
position a particle has achieved so far and the best position
achieved by the entire swarm, respectively. The “cognitive
coefficient” (c1) and “social coefficient” (c2) are constants
that determine the size of the steps the particle takes towards
its personal and global best positions. R1 and R2 are random
matrices used to introduce a stochastic effect on the velocity
update in the optimization process. These coefficient and
matrices are used to update the velocity of a particle, which
determines its next movement in the search space.

Fig. 1: Implemanting the PSO

The modification of the particle’s velocity can be maathemat-
ically modeled according the following equation:

V t+1
i,j = ω.V t

i,j+c1.r
t
1

(
pbestti,j −Xt

i,j

)
+c2.r

t
2

(
gbesttj −Xt

i,j

)
(4)

C. Steps of Algorithm

1) Initialization
a) For each particle i in a swarm population size P.

i) Initialize Xi randomly.
ii) Initialize Vi randomly.

iii) Evaluate fitness value f (Xi).
iv) Initialize pbesti with the help of Xi.

b) Initialize gbest with the help of Xi with the best
fitness

2) Repeat untill the stopping criteria satisfied.
a) For each particle i:

i) Update Xt
i and V t

i according to (2) and (4)
ii) Evaluate fitness f (Xt

i ).
iii) pbesti ← Xt

i if f (pbesti) < f (Xt
i )

iv) gbesti ← Xt
i if f (gbesti) < f (Xt

i )

D. Flowchart

Fig. 2: Flowchart of PSO
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E. Acceleration Constant C1 and C2

As from Eq 3, The amounts by which the particles travel in
the direction of the individual and global best particle are
determined by the acceleration constants c1 and c2, adjusting
the relative contributions of the social and cognitive aspects.
A number of authors have examined how these coefficients
affect the trajectory of the particles and the algorithm’s
convergence properties, and their findings demonstrate that
as the acceleration constants are increased, the frequency of
the particle’s oscillation around the optimum increases while
smaller values produce sinusoidal patterns. In general, it has
been shown that conditions:

c1 = c2 = 2

F. Inertial Weight Factor
Some authors advise using a combination of ωmax = 0.9
and ωmin = 0.4 for the best performance. Implementations
of linearly reduced inertial weight have demonstrated that it
provides very excellent results in many real-world applica-
tions. Overall, Bansal et al.’s comparison of a set of com-
mon optimisation functions demonstrates that chaotic reduced
inertia weights are the best fit (resulting in the lowest error
mean in a set of 30 repeated simulations) while stochastic
inertial weights are better if faster convergence is desired.
However, the methods that result in the lowest error are linear
and constant decreasing inertial weighting.

TABLE I: Inertia weight dynamic adjustment methods

Strategy Inertia weight

Constant weight of
inertia

ω(t) = ω = const

Random weight of
inertia

ω(t) = 0.5 + r
2

r ∼ (0, 1)

Reducing inertia
weight linearly

ω(t) = ωmax − ωmax−ωmin
tmax

t

Chaotic random in-
ertia weight

ω(t) = 0.5r1 + 0.5z

z = 4r2(1− r2)withr1, r2 ∼ U(0, 1)

III. LINEAR PROGRAMMING PROBLEM

Max Z = X1 + 2X2

Subject to:

X1 +X2 ≤ 8

2X1 +X2 ≤ 10

X1, X2 ≥ 0

Parameter are set to be
• Population size = 3
• c1 and c2 = 2
• dimension of problem = 2

• r1 and r2 are random number between 0 and 1

The movement of particles are

V t+1
i,j = ω.V t

i,j+c1.r
t
1

(
pbestti,j −Xt

i,j

)
+c2.r

t
2

(
gbesttj −Xt

i,j

)
Xt+1

i,j = Xt
i,j + V t+1

i,j

TABLE II: Solution of linear programming problem

Iteration Particle X1 X2 Function Value Pbest Gbest

1 1 0.6 6.4 13.40 13.40
2 0.5 7.2 14.90 14.90 14.90
3 1 5.6 12.20 12.20

2 1 0.52 7.04 14.60 14.60

2 0.5 7.2 14.90 14.90 14.90
3 0.6 6.88 14.36 14.36

3 1 0.432 7.74 15.91 15.91

2 0.5 7.2 14.90 14.90
3 0.16 8 16.16 16.16 16.16

4 1 0.136 8 16.136 16.136

2 0.228 7.8 15.82 15.82
3 0 8 16 16.16 16.136

5 1 0 8 16 16

2 0 8 16 16 16
3 0 8 16 16

then,

|f(x)prev − f(x)| = 0

|16.13− 16| = 0

0.13 ≥ 0

then by particle swarm optimization

X1 = 0 , X2 = 8 , Z = 16

A. Computational Result:
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IV. TRANSPORTATION PROBLEM

ai
1 1 4
2 1 6

bj 5 5

∑
ai =

∑
bj = 10

Maximize profit

Max Z = C11X11 + C12X12 + C21X21 + C22X22

Subject to

X11 +X12 = 4

X21 +X22 = 6

X11 +X21 = 5

X12 +X22 = 5

then

Max Z = X1 +X2 + 2X3 +X4

Subject to

X1 +X2 = 4

X3 +X4 = 6

X11 +X3 = 5

X2 +X4 = 5

X1, X2, X3, X4 ≥ 0

Parameter are set to be

• Population size = 3
• c1 and c2 = 2
• dimension of problem = 4
• r1 and r2 are random number between 0 and 1

The movement of particles are

V t+1
i,j = ω.V t

i,j+c1.r
t
1

(
pbestti,j −Xt

i,j

)
+c2.r

t
2

(
gbesttj −Xt

i,j

)
Xt+1

i,j = Xt
i,j + V t+1

i,j
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TABLE III: Solution of Transportation problem

Iteration Particle X1 X2 X3 X4 Function Value Pbest Gbest

1 1 1.2 3.6 4 0.92 13.72 13.72
2 0.75 3.2 4.5 0.8 13.75 13.75 13.75
3 1.6 3.4 3.5 0.7 9.2 9.2

2 1 0.601 3.844 5 0.978 15.42 15.42 15.42

2 0.817 3.488 4.905 0.872 14.98 14.98
3 0.729 3.425 5 0.871 15.02 15.02

3 1 0.183 4 5 1 15.183 15.42

2 0.649 3.819 5 1 15.46 15.46 15.46
3 0.12 3.617 5 1 14.73 15.02

4 1 0 3.709 5 1 14.709 15.183

2 0.548 4 5 1 15.54 15.54 15.54
3 0.496 3.745 5 1 15.24 15.24

5 1 0 4 5 1 15 15

2 0.497 4 5 1 15.49 15.54 15.54
3 0.435 4 5 1 15.43 15.43

6 1 0 4 5 1 15 15

2 0.53 4 5 1 15.53 15.54 15.53
3 0.413 4 5 1 15.41 15.43

Gbest = [0.53 4 5 1]

then,
|f(x)prev − f(x)| = 0

|15.54− 15.53| = 0

0.01 ≥ 0

then by particle swarm optimization

X1 = 0.53 , X2 = 4 , X3 = 5 , X4 = 1 , Z = 15.53

A. Computational Result:
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V. BREAST CANCER DIAGNOSTIC DATA SET

TABLE IV: Data Set

id radius mean texture mean perimeter mean area mean smoothness mean compactness mean concavity mean concave pt mn
0 842302 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.30010 0.14710
1 842517 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.08690 0.07017
2 84300903 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.19740 0.12790
3 84348301 11.42 20.38 77.58 386.1 0.14250 0.28390 0.24140 0.10520
4 84358402 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.19800 0.10430
... ... ... ... ... ... ... ... ... ...
564 926424 21.56 22.39 142.00 1479.0 0.11100 0.11590 0.24390 0.13890
565 926682 20.13 28.25 131.20 1261.0 0.09780 0.10340 0.14400 0.09791
566 926954 16.60 28.08 108.30 858.1 0.08455 0.10230 0.09251 0.05302
567 927241 20.60 29.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200
568 92751 7.76 24.54 47.92 181.0 0.05263 0.04362 0.00000 0.00000

symtry mean ... radius worst text worst perimeter worst area worst ... concavity worst c pts worst symt worst fractal dim wrt
0 0.2419 ... 25.380 17.33 184.60 2019.0 ... 0.7119 0.2654 0.4601 0.11890
1 0.1812 ... 24.990 23.41 158.80 1956.0 ... 0.2416 0.1860 0.2750 0.08902
2 0.2069 ... 23.570 25.53 152.50 1709.0 ... 0.4504 0.2430 0.3613 0.08758
3 0.2597 ... 14.910 26.50 98.87 567.7 ... 0.6869 0.2675 0.6638 0.17300
4 0.1809 ... 22.540 16.67 152.20 1575.0 ... 0.4000 0.1625 0.2364 0.07678
... ... ... ... ... ... ... ... ... ... ... ...
564 0.1726 ... 25.450 26.40 166.10 2027.0 ... 0.4107 0.2216 0.2060 0.07115
565 0.1752 ... 23.690 38.25 155.00 1731.0 ... 0.3215 0.1628 0.2572 0.06637
566 0.1590 ... 18.980 34.12 126.70 1124.0 ... 0.3403 0.1418 0.2218 0.07820
567 0.2397 ... 25.740 39.42 184.60 1821.0 ... 0.9387 0.2650 0.4087 0.12400
568 0.1587 ... 9.456 30.37 59.16 268.6 ... 0.0000 0.0000 0.2871 0.07039

The attributes of the digital picture of a fine needle aspirate (FNA) of a breast mass include the
• ID Number
• Diagnosis, which is either Malignant (M) or Benign (B)

The picture also has ten real-valued features which describe the characteristics of the visible cell nuclei. These features include
the

• radius
• texture
• perimeter
• area
• smoothness
• compactness
• concavity
• concave points
• symmetry
• fractal dimension, Length of Data set = 569

These features can help in the diagnosis of the breast mass by providing information about the characteristics of the cell nuclei
in the picture.

Fig. 3: Data Set Plot
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Fig. 4: DataSet Plot with Particles

A. Result:

TABLE V: Function Value with inertia 1

Iter Funct Value Iter Funct Value Iter Funct Value

0 0.026010 33 0.025310 66 0.025310

1 0.026010 34 0.025310 67 0.025310

2 0.026010 35 0.025310 68 0.025310

3 0.025740 36 0.025310 69 0.025310

4 0.025702 37 0.025310 70 0.025310

5 0.025702 38 0.025310 71 0.025310

6 0.025702 39 0.025310 72 0.025310

7 0.025582 40 0.025310 73 0.025310

8 0.025582 41 0.025310 74 0.025310

9 0.025582 42 0.025310 75 0.025310

10 0.025582 43 0.025310 76 0.025310

11 0.025389 44 0.025310 77 0.025310
12 0.025373 45 0.025310 78 0.025310
13 0.025357 46 0.025310 79 0.025310
14 0.025333 47 0.025310 80 0.025310
15 0.025333 48 0.025310 81 0.025310
16 0.025333 49 0.025310 82 0.025310
17 0.025333 50 0.025310 83 0.025310
18 0.025333 51 0.025310 84 0.025310
19 0.025333 52 0.025310 85 0.025308
20 0.025327 53 0.025310 86 0.025308
21 0.025327 54 0.025310 87 0.025308
22 0.025316 55 0.025310 88 0.025308
23 0.025316 56 0.025310 90 0.025308
24 0.025316 57 0.025310 91 0.025308
25 0.025316 58 0.025310 92 0.025308
26 0.025316 59 0.025310 93 0.025308
27 0.025316 60 0.025310 94 0.025308
28 0.025316 61 0.025310 95 0.025308
29 0.025310 62 0.025310 96 0.025308
30 0.025310 63 0.025310 97 0.025308
31 0.025310 64 0.025310 98 0.025308
32 0.025310 65 0.025310 99 0.025308

• Group best configuration found:
[33.44793 0.0355742 0.001]

• Regressor: C = 33.44793 ϵ = 0.0355742 γ = 0.001

Fig. 5: Best Regressor fitness value

Fig. 6: Prediction
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Fig. 7: Prediction with population best value found

• Mean Squared error for the test set: 0.033581

• Predictions Average: 0.037820

• Predictions Median: 0.034948
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