COVID-19 PREDICTION USING DENSENET-121

Harish Raj M, Harish Raja R, Arjun Ramesh R, Dr. K. Meenakshi

'Student (B.Tech), SRM Institute of Science and Technology Asst. Professor, SRM Institute of Science and Technology

Abstract

Coronavirus 2019, also known as COVID-19, has recently had a negative influence on public health and human lives. Since the Second World War, this disastrous effect has changed human experience by bringing about a health crisis that is unpredictable and exponentially more harmful (Kursumovic et al. in Anaesthesia 75: 989-992, 2020). The global catastrophe is a serious pandemic because to COVID-19's highly contagious qualities within human groups. Early and reliable detection of the virus can be a promising method for tracking and preventing the infection from spreading (for example, by isolating the patients) due to the lack of a COVID-19 vaccine to control rather than cure the illness. This issue points to the need to improve the COVID-19 auxiliary detection method. Due of its anticipated availability, computed tomography (CT) imaging is a commonly used technology for pneumonia. The examination of photos helped by artificial intelligence may be a promising approach for finding COVID-19. In this study, convolutional neural networks (CNN) are used to provide a potential technique for predicting COVID-19 patients from the CT scan. The innovative method for forecasting COVID-19 is based on the most current modification to CNN architecture (DenseNet-121). The results exceeded 92% accuracy, and a 95% recall rate indicated that the prediction of COVID-19 performed as expected.

Keywords

DENSENET-121

I. Introduction

The 2019 coronavirus disease (COVID-19) outbreak has In the research COVID-19 Detection from Chest X-ray pictures early detection of the COVID-19 incidents is a support

II. Objective

public health.

III. Literature Survey

Title

learning and convolutional neural networks.

Description

already been identified as a major global public health using Deep Learning and Convolutional Neural Networks, emergency. The COVID-19 virus was initially discovered in DenseNet-121 Convolutional Neural Networks are proposed as a Wuhan, China, in late 2019, and it unexpectedly spread to more deep learning-based method for identifying COVID-19 cases from than 200 nations. Healthcare experts and policymakers failed chest X-ray pictures. Chest X-ray images from both COVID-19to contain this severe pandemic epidemic, which led to a quick death toll, as a result of the disease's strong communicable collection of a sizable chest imaging dataset. To guarantee data qualities among persons in close contact. It is essential to consistency and quality, the dataset is preprocessed. Then, as the identify and isolate the infected person as quickly as possible deep learning model for COVID-19 prediction, DenseNet-121, a and institute social lockdown since secondary infections in well-liked CNN architecture known for its capacity to extract communities are caused by intimate personal encounters. Thus, intricate information from images, is utilised. Using supervised paramount learning, the DenseNet-121 model is trained on the dataset. The option to take proactive steps to minimize risks and spread of model gains the ability to automatically extract pertinent features infections, plan of clinical treatment and arrange timely care from the chest X-ray pictures and map them to the corresponding COVID-19 or normal class labels. The study uses various performance metrics, such as accuracy, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve, to evaluate the model's performance. The study details the model's The goal of COVID-19 prediction using DenseNet-121 is to create effectiveness at spotting COVID-19 cases in chest X-ray pictures. a reliable and accurate model that can help medical practitioners To assess the efficiency of DenseNet-121 in detecting COVID-19, identify, diagnose, and handle COVID-19 cases successfully, it may also compare its performance to that of other CNN ultimately leading to improved patient care and outcomes for architectures or machine learning techniques. The outcomes might demonstrate the model's accuracy, sensitivity, specificity, and other performance parameters, showing that it is capable of correctly predicting COVID-19 instances from chest X-ray pictures. The study may also go through the method's shortcomings, such as potential biases in the dataset, difficulties in deciphering the findings, and the requirement for additional validation on various datasets. It may also draw attention to the possible clinical ramifications of employing the DenseNet-121 model to predict COVID-19 Detection from Chest X-ray images using deep COVID-19, including early detection, effective screening, and decision assistance for healthcare professionals.

COVID-19 Diagnosis from CT Scan Images using Transfer Learning with Deep Convolutional Neural Networks

Description

convolutional neural networks (CNNs) are used in this study. performance indicators, accuracy, sensitivity, specificity, and other performance metrics, diagnosis and treatment of the illness. showing how well it can predict COVID-19 instances from CT scan data. The practical ramifications of applying the suggested Title model for COVID-19 diagnosis, including the potential for early COVIDX-Net: A Framework of Deep Learning Classifiers to identification, effective screening, and decision support for Diagnose COVID-19 in X-ray Images healthcare providers, may also be included in the study. The study may also draw attention to the method's shortcomings, such as Description potential biases in the dataset, difficulties in interpreting the findings, and the need for more validation on a variety of datasets. Using cutting-edge machine learning methods, COVIDX-Net is a the early diagnosis and management of the disease.

radiographs

Description

In a research study titled "COVID-19 Diagnosis from CT Scan requirements of the study, other CNN architectures, such as VGG, Images Using Transfer Learning with Deep Convolutional Neural ResNet, or DenseNet, may be used.A number of performance Networks," deep learning-based methods are suggested for indicators, including accuracy, sensitivity, specificity, and area identifying COVID-19 cases from CT scan pictures. Deep under the receiver operating characteristic (ROC) curve, are used to assess how well the CNN model performs. To illustrate the A dataset of CT scan pictures is first gathered for the investigation, suggested model's efficacy in the detection and analysis of COVIDencompassing both normal and COVID-19-positive cases' scans. 19, the study may also compare its performance with that of other The dataset is preprocessed to guarantee data consistency and techniques or models already in use. Results of the model's quality, and picture augmentation methods may be used to broaden performance in identifying and evaluating COVID-19 cases from the dataset's diversity. The next step is to use transfer learning, chest radiographs are reported in the study. It might go over the where the base model for feature extraction is a pre-trained CNN model's accuracy, sensitivity, specificity, and other performance model. The basis model for transfer learning in the study is a deep metrics, showing how well it can reliably identify and interpret CNN architecture, such as VGG-16, ResNet-50, or InceptionV3. COVID-19 instances from chest radiographs. The potential clinical conditioned model is fine- tuned on the CT scan images dataset, ramifications of applying the suggested model for COVID-19 where the weights of the base model are updated during training to diagnosis, such as early identification, effective screening, and adapt to the specific task of COVID-19 diagnosis. The refined decision support for medical professionals, may also be included in model gains the ability to automatically identify pertinent the study. The study may also draw attention to the approach's characteristics in CT scan pictures and link those features to the drawbacks, such as potential biases in the dataset, difficulties in corresponding COVID-19 or normal class labels. A number of interpreting the findings, and the need for more validation on a including accuracy, sensitivity, variety of datasets. It might also go through ethical issues like specificity, and area under the receiver operating characteristic patient privacy, fairness, and transparency that come up when (ROC) curve, are used to assess the model's performance. To show utilising AI for COVID-19 identification and analysis. In this the usefulness of the suggested model in diagnosing COVID-19, research study, a deep learning strategy for COVID-19 the study may also compare its performance with that of other identification and analysis from chest radiographs is proposed and approaches or models already in use. The findings of the model's evaluated. It hopes to aid in the development of precise and performance in diagnosing COVID-19 cases from CT scan trustworthy techniques for identifying and analysing COVID-19 pictures are reported in the study. It might go over the model's cases using data from medical imaging, thus facilitating the early

The ethical issues surrounding the use of AI for COVID-19 system of deep learning classifiers that seeks to diagnose COVIDdiagnosis, such as patient privacy, fairness, and transparency, may 19 cases from X-ray pictures. The research report "COVIDX-Net: also be covered. This research paper suggests and assesses the use A Framework of Deep Learning Classifiers to Diagnose COVIDof transfer learning in deep learning. It aims to contribute to the 19 in X-ray Images" suggests this method as a promising tool for development of accurate and reliable methods for diagnosing quick and accurate COVID-19 diagnosis from X-ray pictures. The COVID-19 cases using medical imaging data, potentially aiding in first step in the study is to compile a collection of X-ray pictures, which may include images from COVID-19-positive individuals, normal instances, and even images from other types of lung disorders or diseases. The dataset is preprocessed to guarantee data Deep learning-based detection and analysis of COVID-19 on chest consistency and quality, and picture augmentation methods may be used to broaden the dataset's diversity. In order to diagnose COVID-19 from X-ray pictures, the study then suggests a framework of deep learning classifiers, which typically consists of numerous layers of artificial neural networks. Using a supervised learning technique, the In a research article titled "Deep learning-based detection and deep learning classifiers are trained on the dataset to automatically analysis of COVID-19 on chest radiographs," a deep learning- extract pertinent features from the X-ray pictures and map them to based method for identifying and analysing COVID-19 instances the correct COVID-19 or normal class labels. Depending on the from chest radiographs (X-ray pictures) is proposed. The first step requirements of the study, the study may use a variety of deep in the study is to compile a dataset of chest radiographs, which may learning classifiers, such as convolutional neural networks (CNNs), include pictures of COVID-19-positive cases, healthy instances, recurrent neural networks (RNNs), or a combination of both. To and possibly other kinds of lung problems or disorders. The dataset increase their accuracy and generalizability, deep learning is preprocessed to guarantee data consistency and quality, and classifiers are often trained using a large number of X-ray images. picture augmentation methods may be used to broaden the dataset's Various performance indicators, including accuracy, sensitivity, diversity. Then, for the detection and analysis of COVID-19, a deep specificity, and area under the receiver operating characteristic, are learning model, such as a Convolutional Neural Network (CNN), used to assess the COVIDX-Net framework's performance. To is used. Using supervised learning, the dataset is used to train the show the usefulness of the suggested framework in diagnosing CNN, which then gains the ability to automatically identify COVID-19, the study may also compare its performance with that important characteristics in chest radiographs and map those of other current approaches or models. The paper presents the features to COVID-19 or normal class labels. Depending on the outcomes of the performance of the COVIDX-Net framework in X-

effective screening, and decision support for medical personnel. potential of deep learning in COVID-19 diagnosis. The study may also draw attention to the method's shortcomings, such as potential biases in the dataset, difficulties in understanding the findings, and the need for more validation on the ethical issues surrounding the use of AI for COVID-19 diagnosis, such as patient In summary, deep learning has shown promise in COVID-19 facilitating the early detection and treatment of the illness.

Deep learning for COVID-19 Detection and Diagnosis.

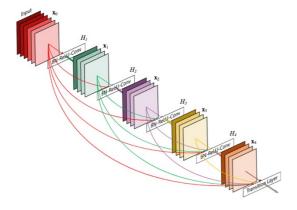
Description

Due to its capacity to automatically learn V, deep learning has V. Proposed system emerged as a viable method for COVID-19 identification and In summary, deep learning has shown promise in COVID-19 strategy. The model gains the ability to automatically identify pertinent aspects in medical images and link those features to the capable of capturing visual data on a wider scale. associated COVID-19 or standard class labels. In order to increase the model's accuracy and generalizability, a huge number of VI.Comparison between Existing system and proposed photos are often used during training. Following model constraint, system different performance indicators, including accuracy, sensitivity, specificity, and area under the receiver operating characteristic On the basis of various datasets, architectures, and methodologies, and diagnosis, including potential biases in the data, COVID-19 identification and diagnosis using deep learning and

ray image-based COVID-19 case diagnosis. It might go over the interpretability issues, and ethical considerations, may also be framework's accuracy, sensitivity, specificity, and other discussed. In summary, deep learning has shown promise in performance metrics, which show that it can correctly identify COVID-19 detection and diagnosis, offering the potential for COVID-19 instances from X-ray pictures. The study may also go accurate and efficient methods for identifying COVID-19 cases through possible clinical ramifications of applying the suggested from medical images. However, further research, validation, and framework for COVID-19 diagnosis, including early detection, integration into clinical practice are needed to fully realize the

IV. **Existing systems**

privacy, fairness, and transparency, may also be covered.In detection and diagnosis, offering the potential for accurate and conclusion, the research study "COVIDX-Net: A Framework of efficient methods for identifying COVID-19 cases from medical Deep Learning Classifiers to Diagnose COVID-19 in X-ray images. The primary goal of this study is to develop trustworthy Images" presents and assesses a framework of deep learning tools for applying CNN on CT images to detect COVID-19 patients. classifiers for COVID-19 diagnosis from X-ray pictures. It hopes In a number of computer vision tasks, the CNN produced excellent to aid in the development of precise and trustworthy techniques for results. Due to its self-learning capabilities, CNN has lately identifying COVID-19 instances from medical imaging data, thus emerged as the leading in-depth learning method for classifying medical images. Numerous CNN-based techniques were put forth for COVID-19 identification. In contrast to other picture datasets, the medical images dataset only uses a small number of training examples. With the use of various approaches, such as data augmentation, CNNs have been amplified to attain ground-breaking efficiency on these datasets.


diagnosis. complicated patterns and features from a lot of data are detection and diagnosis, offering the potential for accurate and proposed for the system. Many research have employed deep efficient methods for identifying COVID-19 cases from medical learning models for COVID-19 detection and diagnosis, including images. In order to identify patients with COVID-19, we used CNN, convolutional neural networks (CNNs), recurrent neural networks a relatively recent method in which the learning process is created (RNNs), and its derivatives. There are multiple steps in the using an association of densely linked convolutional networks conventional deep learning workflow for COVID-19 identification (DenseNet). The fundamental justification for using DenseNet-121 and diagnosis. First, a collection of medical images is gathered and is that it reduces the issue of vanishing gradient, enhances feature preprocessed, such as chest X-ray, CT scan, or lung ultrasound images. The dataset can comprise instances with COVID-19 positivity, cases that are healthy, and cases with other lung maging, DenseNet-121 has demonstrated efficacy in disease magnification. disorders or diseases. Image resizing, normalisation, diagnosis. The idea behind operating DenseNet would be to connect augmentation, and other methods of data preprocessing may be used to ensure data quality and consistency. The dataset is then flow. This strategy aids CNN in making decisions based on all used to train a deep learning model using a supervised learning levels as opposed to only the top layer. Comparing DenseNet to

(ROC) curve, are used to assess the model's performance. In order existing systems for COVID-19 identification and diagnosis to evaluate the model's performance for COVID-19 detection and employing deep learning and convolutional neural networks diagnosis, it may be contrasted with other currently used (CNNs) have been built. These systems have shown varied degrees techniques or models. Other techniques, such as transfer learning, of sensitivity, specificity, and accuracy in identifying COVID-19 which enables the model to utilise pre-trained models on sizable instances in medical pictures such chest X-ray or CT scan images. datasets from similar tasks, may also be used to improve deep In terms of model performance, generalisation, and clinical learning models for COVID-19 identification and diagnosis. The accuracy and dependability of COVID-19 detection and diagnosis COVIDX- Net, on the other hand, uses a framework of deep may also be improved further using ensemble methods, such as integrating numerous deep learning models. Typically, the ray pictures deep learning has shown promise in COVID-19 findings of studies using deep learning for COVID-19 detection and diagnosis are published, and their possible clinical implications are evaluated. These may include early detection of COVID-19 instances, effective screening of large populations, and system as described in the literature, COVIDX-Net may have a assistance in diagnosis and treatment planning for medical experts. number of distinctive features or advantages when compared to Deep learning's drawbacks and difficulties in COVID-19 detection existing systems. Overall, the proposed COVIDX-Net system for

CNNs may have distinctive features or benefits compared to existing methods. To understand their unique characteristics and performance in detecting COVID-19 cases from X-ray pictures, the literature on both the existing methods and the proposed system must be thoroughly reviewed.

VII. System architecture

System architecture for COVID 19 prediction using densenet 121 is illustrated in the given figure.

- 1. Input Data: Chest X-ray photographs of patients are used as input data for the system design. These images are typically grayscale and in the JPEG or PNG format. To maintain uniformity and quality, these photos may undergo preprocessing techniques like scaling, normalisation, and augmentation.
- 2. DenseNet-121 Model: For image classification tasks, a deep convolutional neural network (CNN) model that has already been trained is called DenseNet-121. It is composed of a number of dense blocks, each with a number of convolutional layers and dense connections that enable effective feature reuse and minimise vanishing gradients. DenseNet-121 is suited for COVID-19 prediction since it has been demonstrated to be efficient at learning intricate patterns and characteristics from photos.
- 3. Feature Extraction: The input X-ray pictures are utilised to extract features using the DenseNet-121 model. The DenseNet-121 model's convolutional layers learn to separate pertinent information, such edges, textures, and patterns, from the input images. These features are then sent to the next layers for additional processing.
- 4. Classification Layers: Following the feature extraction, the output features from the DenseNet-121 model are flattened and passed through one or more fully connected layers, also known as the classification layers. These layers are responsible for converting the extracted features into prediction probabilities for different classes, such as COVID-19 positive, COVID-19 negative, and possibly other classes like normal or other lung diseases.
- 5. Activation Functions: Activation functions, such as ReLU (Rectified Linear Unit) or sigmoid, are applied to the output of the fully connected layers to introduce non-

linearity into the model and improve its ability to capture complex patterns in the data.

- 6. Softmax Layer: The softmax layer is typically used as the final layer in the classification architecture to compute the probabilities of the different classes. The softmax function converts the prediction scores into class probabilities, where the class with the highest probability is predicted as the final output.
- 7. Loss Function: A loss function, such as cross-entropy, is used to measure the difference between the predicted class probabilities and the ground truth labels. The loss function is optimized during the training process to update the model parameters and improve the model's prediction accuracy.
- 8. Training Process: A labelled dataset of chest X-ray pictures with known COVID-19 status is used to train the system architecture. By minimising the loss function using backpropagation and gradient descent, the model learns to optimise its parameters depending on the provided labelled data during the training process
- 9. Evaluation Metrics: The effectiveness of the trained model in predicting COVID-19 instances from chest X-ray pictures may be evaluated using a variety of evaluation criteria, including accuracy, sensitivity, specificity, and area under the ROC curve.
- 10. Deployment: The algorithm can be used to forecast COVID-19 cases from fresh, previously unseen chest Xray pictures once it has been trained and assessed. For automated COVID-19 prediction in clinical practise, this may entail integrating the trained model into a broader system or workflow, such as a hospital or healthcare system.

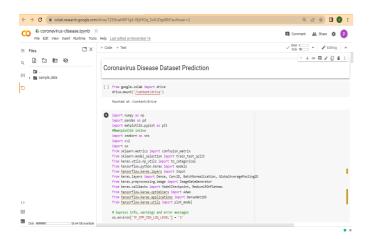
VIII. Modules

- 1.Input Data
- 2.Pre-Processing
- 3. Training The Model
- 4. Model File Saving
- 5.Real Data
- 6.Pre-Processing Real Data
- 7.Output Data

Input Data

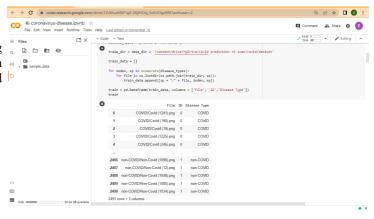

Gathering information from various datasets and sources. Since the video files in the dataset are extremely organised and have little to no fluctuation, we need to add a little amount of volatility to the data. Using a Python module and the dataset we will intentionally add variety.

Pre-Processing

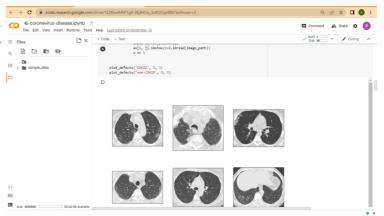

Using the complete size of a huge dataset, it takes a while to calculate the gradient of the model. The image dimensions are 90 by 90 and 40 for the sequence. We have a sizable collection of pictures. The datasets include 1000 videos for each of the two classes: nonviolence and violence

Training the model

Extracting the features from the trained dataset for the training process implementing the training procedure and classification of the scikit-learn python package and applying the extracted features



Model file saving


Real data

Analysing the likelihood of features taken from the real picture data and the trained model using image processing and other Python libraries and comparing the real-time data.


Pre-Processing real data

The process of converting unprocessed data into an image is called preprocessing. Before using the algorithms, the data's quality should be examined.

Output data

Prediction Of Videos According to The Class Declared. With Probability Of The Class Obtained The Prediction Class Is Finalised

Conclusion

In medical image analysis, the automated image classification of hybrid study used CT image categorization based on deep learning technology, which displayed superior accuracy, to identify coronaviruses. J COVID-19 patients. Recall is 95%, while total accuracy is 92%. doi: 10.1016/j.jare.2020.03.005. The average processing time for the DenseNet-121 model is 195.35s. For picture categorization, we used the DenseNet-121 deep learning architecture. For instance, several categorization models were used to support our assertion. Theoretically, the 6. Liu R, et al. Positive rate of RT-PCR detection of SARS-CoV-2 identification technique employing a DenseNet-121 CNN with a pretty big dataset in the training phase of the DenseNet-121 model, Jan to Feb contributing to the present growing COVID-19 literature. Due to doi: 10.1016/j.cca.2020.03.009. the utilisation of the data augmentation strategy, no custom data extraction method is necessary for the applicable architecture. In the real world, this technique can be used in clinical settings to 7.Konar D, et al. Auto-diagnosis of COVID-19 using lung CT identify COVID-19 accurately. In order to obtain a true image of daily infected cases, it would thus be beneficial to increase dependability as reflected by the computational approach for testing that has been provided. Our current investigation, however, doi: 10.1109/ACCESS.2021.3058854. still contains a lot of flaws. First, future network architecture and optimisation improvements might enhance categorization accuracy. Second, the absence of training data during the early 8. Singh D, et al. Classification of COVID-19 patients from chest stages of the COVID-19 outbreak is a problem that cannot be visualisations of the used DenseNet-121 model, which could have improved readability, is another flaw in this study. By using Dis. 2020;39(7):1379–1389. doi: 10.1007/s10096-020-03901-z. different forms of architecture, such as DenseNet-161, DenseNet-169, and DenseNet-201, DenseNet can also be justified for further research and development. The implementation and testing of 9. Ai T, et al. Correlation of chest CT and RT-PCR testing in techniques for further research and assessment in order to more precisely identify COVID-19 patients utilising CT images. Once cases. Radiology. 2020;296:200642. again, since new COVID-19 CT image datasets are being doi: 10.1148/radiol.2020200642. published on a timely basis, updated COVID-19 imaging datasets may be examined to enhance the efficacy of the DenseNet-121 10. Ahuja S, et al. Deep transfer learning-based automated detection technique.

References

1. Kursumovic E, Lennane S, Cook TM. Deaths in healthcare Health. 2020;2(2):53–56. doi: 10.1016/j.bsheal.2020.05.002. workers due to COVID-19: the need for robust data and 12. Rajinikanth V, Dey N, Raj ANJ, Hassanien AE, Santosh KC, analysis. Anaesthesia. 2020;75(8):989–992.

Predictors of coronavirus disease 19 (COVID-19) pneumonitis images. outcome based on computed tomography (CT) imaging obtained 13. Fang Y, et al. Sensitivity of Chest CT for COVID-19: prior to hospitalization: a retrospective study. Emerg Comparison doi: 10.1007/s10140-020-01833- doi: 10.1148/radiol.2020200432. Radiol. 2020;27(6):653–661. x. 3. Behzad S, et al. Coronavirus disease 2019 (COVID-19) 14. Krizhevsky A, Sutskever I, Hinton GE. Advances in neural diagnosis. Emerg not-miss doi: 10.1007/s10140-020-01802-4. 4. Hasan N. A methodological 15. Qin J, et al. A biological image classification method based

approach for predicting COVID-19 epidemic using EEMD-ANN model. Internet Things. 2020;11:100228. CT images using computer-aided systems is crucial. CT image doi: 10.1016/j.iot.2020.100228. 5. Shereen MA, et al. COVID-19 microscopic examination is difficult and time-consuming. This infection: origin, transmission, and characteristics of human Adv Res. 2020:24:91-98.

applied methodology provided an unrevealed best alternative infection in 4880 cases from one hospital in Wuhan, China, from 2020. Clin Chim Acta. 2020;505:172-175.

the infection rate, which has a high correlation with the number of Images with semi-supervised shallow learning network. IEEE

avoided by some places. For accurate prediction, several hundred CT images using multi-objective differential evolution-based photos might not be enough. The absence of Grad Cam convolutional neural networks. Eur J Clin Microbiol Infect

additional deep learning techniques or modified deep learning Coronavirus disease 2019 (COVID-19) in China: a report of 1014

COVID-19 from lung scan slices. Appl Intell. 2021;51(1):571-585. doi: 10.1007/s10489-020-01826-w.

11. Giri AK, Rana DR. Charting the challenges behind the testing of COVID-19 in developing countries: Nepal as a case study. Biosaf

Raja N (2020) Harmony-search and otsu based system for doi: 10.1111/anae.151162. Mirza-Aghazadeh-Attari M, et al. coronavirus disease (COVID-19) detection using lung CT scan

> RT-PCR. Radiology. 2020;296:200432. to

pneumonia incidentally detected on coronary CT angiogram: a do- information processing systems. Cham: Springer; 2012. Imagenet Radiol. 2020;27(6):721-726. classification with deep convolutional neural networks.

CNN. EcolInform. 2020;58:101093.doi: 10.1016/j.ecoinf.2020.1 doi: 10.1016/j.chaos.2020.110245.

01093.

16. Gottapu RD, Dagli CH. DenseNet for anatomical brain deep neural networks with X-ray images. Comput Biol segmentation. Proced Medi. 2020:121:103792.

ComputSci. 2018;140:179185.doi: 10.1016/j.procs.2018.10.327. doi: 10.1016/j.compbiomed.2020.103792.

- classifier. Biocybern Biomed doi: 10.1016/j.bbe.2020.08.005.
- for detection and diagnosis of COVID-19 from chest x-ray Pattern Recognition. 2017.
- images. Comput Methods Progr Biomed. 2020;196:105581. 25. Roy S, Kiral-Kornek I, Harrer S. Conference on artificial doi: 10.1016/j.cmpb.2020.105581
- from chest CT using weak label. medRxiv. 2020;395:497.
- 20. Panwar H, et al. A deep learning and grad-CAM based color 26. Guo W, Xu Z, Zhang H. Interstitial lung disease classification visualization approach for fast detection of COVID-19 cases using using improved DenseNet. Multimed X-rav and CT-Scan images. Chaos Solitons Appl. 2019;78(21):30615-30626. doi: 10.1007/s11042-018-6535-Fractals. 2020;140:110190. doi: 10.1016/j.chaos.2020.110190.
- 21. Ouchicha C, Ammor O, Meknassi M. CVDNet: a novel deep learning architecture for detection of coronavirus (Covid-19) from chest x-ray images. Chaos Solitons Fractals. 2020;140:110245.

17. Abraham B, Nair MS. Computer-aided detection of COVID- 23. Deng J, et al. Imagenet: a large-scale hierarchical image 19 from X-ray images using multi-CNN and Bayesnet database. In: 2009 IEEE Conference on Computer Vision and Eng. 2020;40(4):1436-1445. Pattern Recognition, IEEE. 2009.

22. Ozturk T, et al. Automated detection of COVID-19 cases using

- 24. Huang G, et al. Densely connected convolutional networks. In: 18. Khan AI, Shah JL, Bhat MM. CoroNet: a deep neural network Proceedings of the IEEE Conference on Computer Vision and
 - intelligence in medicine in Europe. Cham: Springer; 2019.
- 19. Zheng C, et al. Deep learning-based detection for COVID-19 ChronoNet: a deep recurrent neural network for abnormal EEG identification.