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Abstract—The advent of autonomous vehicles is poised to
revolutionize the transportation industry across the globe. How-
ever, developing self-driving cars comes with various technical
hurdles that need to be addressed. One major challenge is
creating accurate models that can predict the movements of
traffic participants such as pedestrians, cyclists, and other cars
around the self-driving cars. The purpose of this research is
to assess the effectiveness of different deep learning models in
predicting such movements by evaluating their root mean square
error score. These deep learning models leverage the current state
of the surrounding environment to forecast the motion of traffic
agents.

Index Terms——Autonomous Vehicles (AV), Deep Learning
(DL), Artificial Intelligence (AI)

I. INTRODUCTION

Driving a motor vehicle is a complex task that requires
drivers to analyze and consider the movements of peripheral
agents such as pedestrians, cyclists, and other vehicles before
making a move. Unfortunately, humans are not well-suited
for this task, as evidenced by the fact that traffic accidents
are one of the leading causes of death and injury worldwide.
Research has shown that a significant percentage of these
accidents are caused by human error. This has led to the
development of autonomous vehicle (AV) technology, which
is based on the idea of driverless cars. AVs make decisions
based on input from external sensors like lidar and cameras,
and the processing power of modern computers far exceeds
human capabilities.

To safely deploy AVs on public roads, it is essential to
analyze various tasks such as observing and predicting the
motion and trajectories of peripheral agents and navigating
the AV to the intended destination while taking into account
the state of the agents. The main objective of this research is to
train deep learning models using datasets and optimize the loss
function for training and validation datasets. The research aims
to predict the future coordinates of trajectories for peripheral
agents and calculate the root mean square error (RMSE) score
from the ground truth trajectory and the predicted trajectory
for the future motion of the agents, as shown in Figure 1.
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Fig. 1. ”semantic map with ground agent motion and predicted agent motion”

II. RELATED WORK

The development of autonomous driving technology relies
heavily on the ability of the system to make decisions based on
real-time information. Learning-based decision-making meth-
ods are a key component of this technology, and can be
broadly divided into two categories: policy learning and model
learning.

Policy learning involves training a policy, typically pa-
rameterized by neural networks, to output driving decisions
based on the current state input. Two popular policy learn-
ing approaches are imitation learning (IL) and reinforcement
learning (RL). IL seeks to imitate expert decisions from
demonstrations, but suffers from the problem of distributional
shift during online deployment, resulting in inferior testing
performance. RL, on the other hand, learns online through
interactions with the environment, which addresses the distri-
butional shift issue, but can be very inefficient due to trial-and-
error learning. Some model-based RL approaches attempt to
build a transition model of dynamics and reward function, and
use it to learn or improve a policy. Model learning, on the other
hand, learns a model to predict environment dynamics and plan
over the model, improving the explainability, robustness, and
safety of the system compared to policy learning.

Motion prediction, another critical component of au-
tonomous driving technology, involves predicting long-term



future motion trajectories of traffic participants based on their
historical dynamic states and optionally the map information.
Recent motion prediction networks leveraging Transformers or
GNNs have achieved unprecedented prediction accuracy, but
most focus solely on improving prediction accuracy, ignoring
the applicability to downstream planning tasks. One key issue
with existing models is that they are not aware of the AV’s
future plans, and the prediction results are not reactive to
the AV’s different decisions, forcing the AV to act passively.
Some recent works have attempted to mitigate this issue,
such as PiP, which proposes a planning-informed trajectory
prediction network that conditions the prediction process on
the candidate trajectories of the AV, and conditional behavior
prediction, which formulates a framework for such a prediction
model. However, these works are still largely focused on the
prediction part, and less attention has been paid to decision-
making performance and interactive behaviors.

To address these limitations, the authors propose an
interaction-aware motion prediction model that can make
accurate and reactive predictions of surrounding traffic agents
to support the decision-making process. The proposed model
leverages the framework of receding horizon control, which al-
lows for multi-step look-ahead planning, and is trained online
through interactions with other agents. The authors thoroughly
evaluate the decision-making performance of the interactive
prediction model, and find that it outperforms existing models
on a range of metrics, including average speed, total travel
time, and safety.

Overall, the authors’ work represents an important contribu-
tion to the field of autonomous driving technology, addressing
key limitations in existing learning-based decision-making and
motion prediction models. The proposed interaction-aware
model has the potential to significantly improve the safety,
efficiency, and overall performance of autonomous driving
systems.

III. METHODS

The task at hand is to predict the movement of an object
for the next T seconds, assuming that its tracks are already
provided by a perception system. Our focus is solely on
motion prediction, and we accomplish this by first converting
the data into multi-channel images through a process called
rasterization. We then proceed to explain the design of our
model, as well as the loss function used to train it.

A. Rasterization

In order to create images for training, we convert the raw
data by combining the past trajectories of the agents with a
map that contextualizes the surrounding road environment. We
take steps to standardize the input by shifting and rotating the
frame so that the target agent is consistently situated at a fixed
location on the raster image at the time of prediction, and
ensuring that its velocity is aligned with the X-axis.

B. Model

The future is uncertain, our goal is to generate multiple
possible trajectories for the future movement of the object,

and evaluate each proposal against the actual trajectory. This
baseline solution uses a ResNet18 model architecture to train
on over 2 million samples from the dataset. The model predicts
the future coordinates of a single agent at a time, based on a
bird’s eye view (BEV) top-down raster that encodes all agents
and the map. This raster is generated by taking a sequence
of ten consecutive frames (representing one second of data)
as input and encoding it into a fixed-sized tensor. To train
the model, a batch size of 16 is used over 30,000 iterations.
The input size of the model is 300px, with a history of 1s.
This means that the model takes in a sequence of ten frames,
each of which is 300 pixels wide, to make a prediction about
the movement of a traffic agent in the eleventh frame. The
optimizer used is Adam with a learning rate of le-3. The loss
function used is Mean Squared Error (MSE) loss.

C. Model Architecture

ResNet architecture: The model being used here is
“ResNet”, which stands for Residual Network which, as the
name suggests supports Residual Learning. In conventional
deep learning convolutional neural networks, multiple layers
are stacked upon each other and trained accordingly. By
contrast in residual learning, the network doesn’t directly try
to learn features but instead tries to learn some residual.
Residual; to be understood easily can be described as to
be subtraction of the features from the input layer of that
particular layer. This is done by using shortcut connections
between the layers (directly connecting the input of yth layer
to the output of some (y + n)th layer). These are comparatively
easier to implement and train than conventional models and
also the common problem faced by all of degrading accuracy
is massively resolved.

D. Loss Function

MSE (Mean Squared Error) is a popular metric used in
machine learning to evaluate the accuracy of a model’s predic-
tions. It measures the average squared difference between the
predicted and actual values, where larger errors are weighted
more heavily. This metric is commonly used as a loss function
during model training to minimize the difference between
predicted and actual values.In addition, the MSE is a con-
tinuous measure, meaning that it can be used to compare the
performance of different models in a meaningful way. This is
important because it allows researchers to quantitatively evalu-
ate the impact of different modeling choices, such as the choice
of input features or the regularization parameter.However,
MSE has some limitations, such as sensitivity to outliers and
the fact that it is calculated using the square of the differences,
which may not be the best metric when the absolute difference
is more important. Despite these limitations, MSE is widely
used due to its simplicity and effectiveness in evaluating the
accuracy of a model’s predictions, making it a valuable tool
in machine learning and statistical modeling.
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Fig. 2. ”Overview architecture of our model”

IV. EXPERIMENTS
A. Data set

The data set that has been released includes 170,000 scenes,
with each scene capturing the movement of the self-driving
vehicle, other traffic participants, and the state of traffic lights.
The data set also includes a high-definition semantic map and
a high-resolution aerial picture that can be used to enhance
prediction. The scenes were captured by a fleet of self-driving
vehicles using seven cameras, three LiDARs, and five radars.
The LiDAR on the roof of the vehicle has 64 channels and
spins at 10 Hz, while the two LiDARs on the front bumper
have 40 channels. All seven cameras are mounted on the roof

and have a 360° horizontal field of view. The four radars are
also mounted on the roof, while one radar is placed on the
forward-facing front bumper.

The data set contains over 1,118 hours of logs, with each
scene being 25 seconds long, and the data set has been split
into a training set, a validation set, and a test set. The training
set includes 928 hours of logs and 134,000 scenes, while the
validation set includes 78 hours of logs and 11,000 scenes,
and the test set includes 112 hours of logs and 16,000 scenes.
The total size of the data set is 1,118 hours, 26,344 km, and
162,000 scenes. The data set was collected between October
2019 and March 2020 during daytime, between 8 AM and 4
PM.

The data set provides precise information about traffic
participants, including vehicles, pedestrians, and cyclists. Each
traffic participant is represented by a 2.5D cuboid, velocity,
acceleration, yaw, yaw rate, and a class label. The data set
also provides information about the road itself, including
lane geometry, road rules, and other traffic elements. The
high-definition semantic map includes information about lane
boundaries, lane connectivity, driving directions, road class,
road paintings, speed limits, lane restrictions, crosswalks,
traffic lights, traffic signs, restrictions, and speed bumps. The
semantic map also includes precise road geometry, which can
be used for planning driving behavior and anticipating the
movements of other traffic participants. The semantic map is
given in the form of a protocol buffer and includes a total of
15,242 labeled elements, including 8,505 lane segments.

The data set has been encoded in the form of n-dimensional
compressed zarr arrays. The zarr format allows for fast random
access to different portions of the data set while minimizing
the memory footprint, which enables efficient distributed train-
ing on the cloud.

The data set includes a large number of scenes captured
by a fleet of self-driving vehicles using a variety of sensors,
providing precise information about traffic participants and
the road itself. The data set also includes a high-definition
semantic map and a high-resolution aerial picture, which can
be used to enhance prediction. The data set has been split into
a training set, a validation set, and a test set and has been
encoded in the form of n-dimensional compressed zarr arrays,
enabling efficient distributed training on the cloud.

B. Implementation Details

The focus of this project is to develop and evaluate motion
prediction models using the Lyft Motion Prediction for Au-
tonomous Vehicles Kaggle competition dataset. The aim is to
predict the movements of traffic agents such as cyclists, pedes-
trians, and cars around autonomous vehicles. The approach
taken is to build on the single mode baseline solution provided
by the competition organizers, which uses a ResNet18 model
architecture to train on over 2 million samples from the dataset.

The model predicts the future coordinates of a single agent
at a time based on a bird’s eye view (BEV) top-down raster
that encodes all agents and the map.



To implement this approach, the primary programming
language used is Python, and the PyTorch deep learning
framework is used for building and training the models. Addi-
tionally, the Lyft L5Kit library is used to provide a toolkit for
working with the Lyft Level 5 AV data set. The design follows
industry best practices for deep learning model development,
including good code organization, version control using Git,
and modular design. The constraints, alternatives, and trade
offs considered include selecting appropriate hyper parameters
and balancing model accuracy with computational complexity.
The ResNetl8 architecture is chosen for its balance between
accuracy and computational efficiency, although other models
like ResNet50 or DenseNet may offer higher accuracy at the
cost of increased computational complexity. The goal is to
optimize the model’s performance without over fitting the
training data.

Balancing model accuracy with computational complexity
is another important trade-off. The ResNetl8 architecture is
chosen for its balance between accuracy and computational
efficiency. Other models like ResNet50 or DenseNet may
offer higher accuracy at the cost of increased computational
complexity. The goal of this project is to optimize the model’s
performance without overfitting the training data.

C. Metrics

The negative log-likelihood (NLL) of a mixture of Gaus-
sians can be used as the loss function to evaluate the predicted
trajectory hypotheses. The NLL is computed by taking the
ground truth trajectory and finding the negative log probability
of it under the predicted mixture of Gaussians, where the
means are equal to the predicted trajectories and the identity
matrix I is used as the covariance. The loss function can be
further decomposed into the product of 1-dimensional Gaus-
sians. Although the proposed loss function does not explicitly
penalize the model for generating similar trajectories, the
model is not at risk of mode collapse because combining all
the probability mass into one mode leads to a higher loss value
in case of a misprediction. Therefore, optimizing the proposed
loss function results in sufficient multimodality.In other words,
given a ground truth trajectory

L = -log P(Xy) = —log (S bN (Xgi e, 1)) @)

and K predicted trajectory hypotheses

Xi=(zk1,Y61)s - (@er, y61)], k=1,...,K (3)

we compute negative log probability of the ground truth
trajectory under the predicted mixture of Gaussians with the

means equal to the predicted trajectories and the identity
matrix I as covariance:

L=-log L(0]x) = — 375, log f(xil6) (4)

where N (-; p, sigma) is the probability density function
for the multivariate Gaussian distribution with mean p and
covariance matrix sigma. The loss can be further decomposed
into the product of 1-dimensional Gaussians, and we get just
a logarithm of the sum of the exponents:

L = -log P(Xy) = ~log (X12, e (Xt e 1)) (5)

The proposed loss function does not have a direct penalty for
the model producing very similar trajectories. However, based
on empirical observations, we have not encountered a scenario
where all probability is assigned to a single mode resulting in
higher risk and loss values in case of incorrect predictions.
Hence, optimizing the proposed loss is adequate to achieve
sufficient multimodality.

D. Results

Our first model is a single mode baseline that uses the
resnet18 architecture, trained for 30000 iterations with a batch
size of 16. The input size for this model is 300px with a history
of 1 second or 10 frames. The optimizer used for this model
is Adam with a learning rate of le-3, and the loss function
used is Mean Squared Error (MSE) Loss. The Lower Bound
(LB) score for this model is 246.349.

Our second model is also a single mode baseline using the
resnet18 architecture, trained for 30000 iterations with a batch
size of 16. However, the input size for this model is 350px
with a history of 1 second or 10 frames. The optimizer used
for this model is Adam with a learning rate of le-3, and the
loss function used is MSE Loss. The LB score for this model
is 169.83.

These results suggest that the second model with an input
size of 350px performs better than the first model with an
input size of 300px. The LB score of the second model is
significantly lower, indicating better performance in predicting
the trajectory of the vehicles. The use of the resnetl8 archi-
tecture and the Adam optimizer with a learning rate of le-3
remained the same for both models, but the change in input
size seemed to have a significant impact on the performance of
the model.Further research and experimentation are necessary
to determine the optimal approach for predicting vehicle
trajectories in autonomous driving systems.

3 curves corresponding to 3 mode of predictions. The legend
indicates the confidence scores. The bright green is history.
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Fig. 4. “Predicting the trajectory of a vehicle”

CONCLUSIONS

The Lyft dataset used in this paper is currently the most
extensive and detailed public dataset available for training
solutions, surpassing even the best alternative by three times in
size and descriptive quality. The results of the study indicate
that an increase in the number of parameters leads to better
model performance, as evidenced by a decrease in the ADE
value. This is because more layers in the model allow for the
extraction of additional features, and an increase in parameters
helps to fine-tune the model. Overall, the paper aims to
contribute to future research efforts aimed at improving the
performance of self-driving vehicles.
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