CHESS ENGINE

1 Gautam Mayya, 2 Chandan M, 3Gagan Y, “Degala Gagan, *Assoc.Prof.Dinesh Singh.
lgaytammayya@gmail.com, 2chandanmallesh0@gmail.com, 3gaganak.yalamuri@gmail.com,
“degalagagan@gmail.com@gmail.com, Sdineshs@pes.edu .
1.2.3.4.5 Department of Computer Science and Engineering,
PES University (560085).

Abstract— This abstract discusses a chess engine that
utilizes Minimax search with alpha-beta pruning and
considers only the top 50 percent of possible moves.

The selection of these moves is based on a trained dataset
where moves played by the winner are labelled as good,
and possible legal moves that could have been played.
but weren’t labelled as bad. The top 50 percent of moves,
ordered by their good percentage, are selected. This
approach reduces the number of positions evaluated.

by the algorithm, resulting in faster and more efficient
computation. The use of a trained dataset to identify the
best moves has shown to be effective in improving.

the performance of the chess engine. This technique has
been used by top computer chess engines, and the
continued development of artificial intelligence and
machine. Learning will likely lead to even more advanced
chess engines in the future.

1] INTRODUCTION
Chess is a game of strategy, intelligence, and skill, and has
been played for centuries. In recent years, there has been an
explosion in the development of computer chess engines,
which can play the game at a level that is beyond even the
best human players. These engines use advanced algorithms
and artificial intelligence techniques to analyze millions of
possible moves and find the best one. One such chess engine
that has gained popularity is the one which uses
minimax search with alpha beta pruning and only the top 50
percent of the possible moves are taken into consideration.

The Minimax algorithm is a commonly used method in
computer chess engines, which works by considering all
possible moves that can be made from the current position and
evaluating the best possible move based on a scoring function.
Alpha-beta pruning is a technique used to reduce the number
of positions that need to be evaluated by discarding positions
that are guaranteed to be worse than a previously evaluated
position. This algorithm is particularly useful in chess, where
the number of possible moves at any given point can be very
large.

The approach of considering only the top 50 percent of the
possible moves is based on a trained dataset, where thousands

of games have moves played by the winner labeled as good

and the possible legal moves that he could have played but
didn't are labeled as bad. The top 50 percent of the moves in
order of their good percentage are taken. This dataset is
trained using machine learning techniques to identify the
moves that are most likely to lead to a win.

By using this approach, the chess engine can focus on a
smaller subset of the possible moves, which reduces the
computation time required to evaluate the best move. This
approach has been shown to be effective in improving the
performance of the chess engine and has been used by many
top computer chess engines.

In conclusion, the chess engine that uses Minimax search with
alpha-beta pruning and only the top 50 percent of the possible
moves has proven to be a successful approach in the
development of chess engines. By using a trained dataset to
identify the best moves, this engine can quickly evaluate the
best move and improve its performance. With the continued
advancement in artificial intelligence and machine learning, it
is likely that we will see even more advanced chess engines in
the future.

[11] LITERATURE SURVEY
After referring to multiple models of chess engine which uses
a variety of techniques like Reinforcement learning, Monte
Carlo Search, Machine learning, Minimax algorithm and the
likes, we concluded that utilizing just one technique in a chess
engine is not worth the time or the processing power required
and the engine can be made way more efficient with the
technique of combining two different methods to save money
and time. One of the most famous and efficient engines in the
world currently is Stockfish which uses the minimax tree
alone with the help of multiple evaluation functions but with
the help of a huge processor it searches ahead till the endgame
is reached. This obviously is not going to be made possible
while using the regular engines and hence modifications must
be made. So, in building our model, we have combined two
methods, that is the minimax algorithm and the machine
learning part.


mailto:3jsilviyanancy@gmail.com
mailto:3jsilviyanancy@gmail.com

[Event "Interpolis International Tournament"]
[Site "Tilburg NED"]

[Date "1994.89.108"]

[Round "1.1"]

[White "Seirawan, Yasser"]

[Black "Smyslov, Vassily"]

[Result "e-1"]

1. d4 Nf6 2. c4 e6 3. Nf3 Bb4+ 4. Nbd2 c5 5. a3 Bxd2+ 6. Bxd2 d6 7. dxc5 dxc5
8. Qc2 Nbd7 9. 0-0-0 Qc7 18. g3 Ng4 11. Bf4 e5 12. Bh3 h5 13. Bxgd hxgd 14.
Nxe5 Nxe5 15. Rd5 Rh5 16. Rxe5+ Rxe5 17. Qh7 f6 18. Rdl Kf7 19. Qh8 Qc6 20. Rd8
Re8 21. Qh5+ Ke7 22. Rd6 Qe4 23. Rd3 Be6 24. Bdé+ Kd8 25. Be5+ Bd7 26. Qf7 Qf5
27. Bf4 g5 28. Be3 Qe6 29. Qg7 b6 30. Rd5 Qe7 31. Rxg5s Oxg7 32. Rxg? Kc7 33. b3
Rxe3 34. fxe3 Rh8 35. e4 Rxh2 36. Kd2 Rg2 37. Rf7 Rxg3 38. e3 Rf3 39. Ke2

{On time} ©-1

Fig.1 DATASET: PORTABLE GAME NOTATION

[111] ALGORITHMS USED

Minimax Algorithm:

The minimax algorithm is a commonly used technique in
game theory and artificial intelligence for determining the best
move in a two-player game, such as chess.

In a game like chess, where each player takes turns making
moves, the minimax algorithm involves evaluating all possible
moves and predicting the outcome of each move for both
players.

The algorithm works by assuming that the opponent will
always try to make the best move possible,

and therefore, it minimizes the maximum possible loss (hence
the name "minimax").

The algorithm recursively generates a game tree, with each
node representing a possible move and each leaf node
representing a possible game outcome. It then evaluates the
leaf nodes by assigning a score based on how favourable the
outcome is for the player who made the move.

This score is then propagated back up the tree to the root
node, where it is used to determine the best move for the
player.

In chess engines, the minimax algorithm is typically combined
with alpha-beta pruning, which is a technique that reduces the
number of nodes that need to be evaluated by pruning.
branches of the tree that are unlikely to lead to a good
outcome. This greatly reduces the search space,
allowing the algorithm to search deeper into the game tree and
make more informed decisions about the best move.

In addition to the basic minimax algorithm, there are several
extensions and variations that have been developed over the
years to improve the performance of chess engines. For
example, the use of transposition tables can greatly reduce the
amount of redundant evaluation by storing previously
evaluated positions and their associated scores. Other
techniques, such as iterative deepening, move ordering, and
quiescence search, have also been developed to improve the
efficiency and accuracy of the algorithm.

Overall, the minimax algorithm is an essential tool for any
serious chess engine, as it allows the computer to evaluate and
analyse the vast number of possible moves and positions in a
game of chess, and ultimately make the best possible decision
for each move.

Alpha Beta Pruning:

Alpha-beta pruning is a technique used in game tree search
algorithms to reduce the number of nodes that need to be
evaluated. It is particularly effective in two-player games like
chess, where the search space can be very large, and it is
important to search as deeply as possible to find the best
move.

In a game tree search, the algorithm evaluates each possible
move and its resulting game state, creating a tree of possible
moves and outcomes. Alpha-beta pruning is a method of
cutting off branches of the tree that are unlikely to lead to a
good outcome, without evaluating all the leaf nodes in those
branches.

The algorithm works by maintaining two values: alpha, which
represents the maximum value found so far for the
maximizing player, and beta, which represents the minimum
value found so far for the minimizing player. As the algorithm
searches deeper into the tree, it updates these values and
prunes branches that are guaranteed to be worse than the
current best move.

For example, consider a position where the maximizing player
has two possible moves, A and B. The algorithm evaluates
move A and finds that it leads to a position with

a score of 10. It then evaluates move B and finds that it leads
to a position with a score of 8. Since the maximizing player
will always choose the move with the highest score,

move A is better than move B. Therefore, the algorithm can
safely prune the subtree of move B, since it is guaranteed to

be worse than move Alpha-beta pruning can greatly reduce
the number of nodes that need to be evaluated, especially
when combined with other techniques like iterative deepening
and move ordering. In a chess engine, alpha-beta pruning is an
essential tool for evaluating possible moves and finding the
best move in a reasonable amount of time.

Overall, alpha-beta pruning is a powerful and widely used
technique in game tree search algorithms, and it is particularly
effective in two-player games like chess, where the search
space is large, and the goal is to find the best move as quickly
and accurately as possible.

Alpha beta pruning, Example

MAX e =95
MIN

MAX

4= podes that were never explored !!!

Fig.2 Alpha beta pruning.



[IV] PROPOSED WORK

A chess engine that uses Minimax search with alpha-beta
pruning and selective consideration of only the top 50 percent
of possible moves has several working components that
enable it to play chess at a high level. In this system, the
evaluation function is calculated by assigning specific
positional scores and the actual value of each piece. The move
which gives the highest evaluation after a certain depth will be
the move played.

The evaluation function is a crucial component of a chess
engine. It assigns a score to each possible position on the
chessboard. The score is based on various factors such as
piece values, pawn structure, control of the centre, king safety,
and more. By assigning a score to each position, the
evaluation function provides a means to compare different
positions and determine which move is the best.

To calculate the positional scores, the engine considers several
aspects of the chessboard, such as the presence of pawns,
knights, bishops, rooks, and the queen, and the control of the
centre. Each of these aspects is assigned a value, and the
overall score is calculated by adding up the values for each
aspect.

For example, a bishop on a central square may be worth more
than a bishop on the edge of the board. Similarly, a pawn
structure that allows for the easy development

of pieces may be worth more than a pawn structure that is
more cramped.

The actual value of each piece is also considered. In general, a
queen is worth nine points, a rook is worth five points, a
bishop and knight are worth three points each, and a pawn is
worth one point. However, the actual value of each piece can
vary depending on the position of the pieces and the overall
situation on the board. For example, a bishop may be more
valuable than a knight in an open position with many
diagonals, while a knight may be more valuable in a

closed position with many pawns.

Once the evaluation function has assigned a score to each
possible position, the search algorithm is used to determine
the best move. The Minimax algorithm works by recursively
evaluating the score of each possible move and selecting the
move that leads to the best outcome. In other words, the
engine considers all possible moves at each level and
evaluates the best move based on the score generated by the
evaluation function.

Alpha-beta pruning is then used to discard positions that are
guaranteed to be worse than a previously evaluated position,
which greatly reduces the number of positions that need to be
evaluated. Alpha-beta pruning works by tracking two values,
alpha and beta, that represent the best possible score for the
maximizing player and the worst possible score for the

minimizing player, respectively. As the engine evaluates each
move, it updates the alpha and beta values accordingly.

If a move leads to a score worse than the current alpha or beta
value, it is discarded, as it is guaranteed to be worse than a
previously evaluated position.

Finally, the selection of the top 50 percent of possible moves
based on a trained dataset is used to further improve the
engine's performance.

This dataset is created by analysing thousands of games
played by the winners and labelling their moves as good. The
possible legal moves that could have been played but weren’t
labelled as bad. The engine then takes the top 50 percent of
moves in order of their good percentage and considers only
those moves during its search. This technique greatly reduces
the number of positions that need to be evaluated, further
improving the engine's performance.

So, a chess engine that uses Minimax search with alpha-beta
pruning and selective consideration of only the top 50 percent
of possible moves, with the evaluation function calculated by
assigning specific positional scores and the actual value of
each piece, is a complex but highly effective system.

The evaluation function provides a means to compare
different positions, while the search algorithm and selection of
top moves enable the engine.

Fig.3 INTERFACE



[V] CONCLUSIONS

In conclusion, the use of Minimax search with alpha-beta
pruning and selective consideration of only the top 50 percent
of possible moves, based on a trained dataset,

has resulted in a successful chess engine. The approach of
labelling moves played by the winner as good and legal moves
that could have been played but weren't as bad has enabled the
engine to quickly evaluate the best move and improve its
performance. This technique has been used by top computer
chess engines and has shown to be effective in reducing
computation time while still achieving excellent results. As
artificial intelligence and machine learning continue to
advance, we can expect to see even more advanced chess
engines in the future that will further push the limits of what is
possible in the game of chess.

[VI] REFERENCES

[1] Nilma Upasani, Ansh Gaikwad, Arshad Patel, Nisha
Modani, Prashanth Bijamwar, Sarvesh Patil, “Dev Zero : A
Chess Engine”, 2021 International Conference on
Communication information and Computing Technology
(ICCICT)2021.

[2] Varsha Shrivastava, Siddhant Mishra, Himanshu Panchal,
“Chess Moves Prediction using Deep Learning Neural
Networks”.

[3] “Deep Learning Neural Networks” (2021),
d0i:10.1109/ICACC-202152719.2021.9708405.

[4] Paul Grunke, “Chess Al and epistemic opacity”,
Informacios Tarsadalom, May 2020
doi:http://dx.doi.org/10.22503/inftars. X1X.2019.4.1

[5] Victor Sim, “Implementing a Deep Learning Chess Engine”

[6]. Steven James, George Konidaris, Benjamin Rosman, “An
Analysis of Monte Carlo Search”, Proceedings of the Thirty-
First AAAI Conference on Atrtificial Intelligence (AAAI-17)
At:SanFrancisco,USA,2017.

[7]. Eli David, Nathan S. Netanyahu, Lior Wolf, “DeepChess:
End to End Deep Neural Network for Automatic Learning in
Chess”, International Conference on Artificial Neural
Networks (ICANN), Springer LNCS, Vol. 9887, pp. 88-96,
Barcelona,Spain,2016,
doi:https://doi.org/10.48550/arXiv.1711.09667 .



http://dx.doi.org/10.22503/inftars.XIX.2019.4.1
http://dx.doi.org/10.22503/inftars.XIX.2019.4.1
https://doi.org/10.48550/arXiv.1711.09667



