
 CHESS ENGINE

1 Gautam Mayya, 2 Chandan M, 3Gagan Y, 4Degala Gagan, 5Assoc.Prof.Dinesh Singh.
1gaytammayya@gmail.com, 2chandanmallesh0@gmail.com, 3gaganak.yalamuri@gmail.com,

 4degalagagan@gmail.com@gmail.com, 5dineshs@pes.edu .
 1, 2, 3 ,4 ,5 Department of Computer Science and Engineering,

 PES University (560085).

Abstract— This abstract discusses a chess engine that

utilizes Minimax search with alpha-beta pruning and

considers only the top 50 percent of possible moves.

The selection of these moves is based on a trained dataset

where moves played by the winner are labelled as good,

and possible legal moves that could have been played.

but weren’t labelled as bad. The top 50 percent of moves,

ordered by their good percentage, are selected. This

approach reduces the number of positions evaluated.

by the algorithm, resulting in faster and more efficient

computation. The use of a trained dataset to identify the

best moves has shown to be effective in improving.

the performance of the chess engine. This technique has

been used by top computer chess engines, and the

continued development of artificial intelligence and

machine. Learning will likely lead to even more advanced

chess engines in the future.

 [I] INTRODUCTION
Chess is a game of strategy, intelligence, and skill, and has

been played for centuries. In recent years, there has been an

explosion in the development of computer chess engines,

which can play the game at a level that is beyond even the

best human players. These engines use advanced algorithms

and artificial intelligence techniques to analyze millions of

possible moves and find the best one. One such chess engine

that has gained popularity is the one which uses

minimax search with alpha beta pruning and only the top 50

percent of the possible moves are taken into consideration.

The Minimax algorithm is a commonly used method in

computer chess engines, which works by considering all

possible moves that can be made from the current position and

evaluating the best possible move based on a scoring function.

Alpha-beta pruning is a technique used to reduce the number

of positions that need to be evaluated by discarding positions

that are guaranteed to be worse than a previously evaluated

position. This algorithm is particularly useful in chess, where

the number of possible moves at any given point can be very

large.

The approach of considering only the top 50 percent of the

possible moves is based on a trained dataset, where thousands

of games have moves played by the winner labeled as good

and the possible legal moves that he could have played but

didn't are labeled as bad. The top 50 percent of the moves in

order of their good percentage are taken. This dataset is

trained using machine learning techniques to identify the

moves that are most likely to lead to a win.
By using this approach, the chess engine can focus on a

smaller subset of the possible moves, which reduces the

computation time required to evaluate the best move. This

approach has been shown to be effective in improving the

performance of the chess engine and has been used by many

top computer chess engines.

In conclusion, the chess engine that uses Minimax search with

alpha-beta pruning and only the top 50 percent of the possible

moves has proven to be a successful approach in the

development of chess engines. By using a trained dataset to

identify the best moves, this engine can quickly evaluate the

best move and improve its performance. With the continued

advancement in artificial intelligence and machine learning, it

is likely that we will see even more advanced chess engines in

the future.

 [II] LITERATURE SURVEY
After referring to multiple models of chess engine which uses

a variety of techniques like Reinforcement learning, Monte

Carlo Search, Machine learning, Minimax algorithm and the

likes, we concluded that utilizing just one technique in a chess

engine is not worth the time or the processing power required

and the engine can be made way more efficient with the

technique of combining two different methods to save money

and time. One of the most famous and efficient engines in the

world currently is Stockfish which uses the minimax tree

alone with the help of multiple evaluation functions but with

the help of a huge processor it searches ahead till the endgame

is reached. This obviously is not going to be made possible

while using the regular engines and hence modifications must

be made. So, in building our model, we have combined two

methods, that is the minimax algorithm and the machine

learning part.

mailto:3jsilviyanancy@gmail.com
mailto:3jsilviyanancy@gmail.com

 Fig.1 DATASET: PORTABLE GAME NOTATION

 [III] ALGORITHMS USED

Minimax Algorithm:

The minimax algorithm is a commonly used technique in

game theory and artificial intelligence for determining the best

move in a two-player game, such as chess.

 In a game like chess, where each player takes turns making

moves, the minimax algorithm involves evaluating all possible

moves and predicting the outcome of each move for both

players.

The algorithm works by assuming that the opponent will

always try to make the best move possible,

and therefore, it minimizes the maximum possible loss (hence

the name "minimax").

The algorithm recursively generates a game tree, with each

node representing a possible move and each leaf node

representing a possible game outcome. It then evaluates the

leaf nodes by assigning a score based on how favourable the

outcome is for the player who made the move.

 This score is then propagated back up the tree to the root

node, where it is used to determine the best move for the

player.

In chess engines, the minimax algorithm is typically combined

with alpha-beta pruning, which is a technique that reduces the

number of nodes that need to be evaluated by pruning.

branches of the tree that are unlikely to lead to a good

outcome. This greatly reduces the search space,

allowing the algorithm to search deeper into the game tree and

make more informed decisions about the best move.

In addition to the basic minimax algorithm, there are several

extensions and variations that have been developed over the

years to improve the performance of chess engines. For

example, the use of transposition tables can greatly reduce the

amount of redundant evaluation by storing previously

evaluated positions and their associated scores. Other

techniques, such as iterative deepening, move ordering, and

quiescence search, have also been developed to improve the

efficiency and accuracy of the algorithm.

Overall, the minimax algorithm is an essential tool for any

serious chess engine, as it allows the computer to evaluate and

analyse the vast number of possible moves and positions in a

game of chess, and ultimately make the best possible decision

for each move.

Alpha Beta Pruning:

Alpha-beta pruning is a technique used in game tree search

algorithms to reduce the number of nodes that need to be

evaluated. It is particularly effective in two-player games like

chess, where the search space can be very large, and it is

important to search as deeply as possible to find the best

move.

In a game tree search, the algorithm evaluates each possible

move and its resulting game state, creating a tree of possible

moves and outcomes. Alpha-beta pruning is a method of

cutting off branches of the tree that are unlikely to lead to a

good outcome, without evaluating all the leaf nodes in those

branches.

The algorithm works by maintaining two values: alpha, which

represents the maximum value found so far for the

maximizing player, and beta, which represents the minimum

value found so far for the minimizing player. As the algorithm

searches deeper into the tree, it updates these values and

prunes branches that are guaranteed to be worse than the

current best move.

For example, consider a position where the maximizing player

has two possible moves, A and B. The algorithm evaluates

move A and finds that it leads to a position with

a score of 10. It then evaluates move B and finds that it leads

to a position with a score of 8. Since the maximizing player

will always choose the move with the highest score,

move A is better than move B. Therefore, the algorithm can

safely prune the subtree of move B, since it is guaranteed to

be worse than move Alpha-beta pruning can greatly reduce

the number of nodes that need to be evaluated, especially

when combined with other techniques like iterative deepening

and move ordering. In a chess engine, alpha-beta pruning is an

essential tool for evaluating possible moves and finding the

best move in a reasonable amount of time.

Overall, alpha-beta pruning is a powerful and widely used

technique in game tree search algorithms, and it is particularly

effective in two-player games like chess, where the search

space is large, and the goal is to find the best move as quickly

and accurately as possible.

 Fig.2 Alpha beta pruning.

 [IV] PROPOSED WORK

A chess engine that uses Minimax search with alpha-beta

pruning and selective consideration of only the top 50 percent

of possible moves has several working components that

enable it to play chess at a high level. In this system, the

evaluation function is calculated by assigning specific

positional scores and the actual value of each piece. The move

which gives the highest evaluation after a certain depth will be

the move played.

The evaluation function is a crucial component of a chess

engine. It assigns a score to each possible position on the

chessboard. The score is based on various factors such as

piece values, pawn structure, control of the centre, king safety,

and more. By assigning a score to each position, the

evaluation function provides a means to compare different

positions and determine which move is the best.

To calculate the positional scores, the engine considers several

aspects of the chessboard, such as the presence of pawns,

knights, bishops, rooks, and the queen, and the control of the

centre. Each of these aspects is assigned a value, and the

overall score is calculated by adding up the values for each

aspect.

For example, a bishop on a central square may be worth more

than a bishop on the edge of the board. Similarly, a pawn

structure that allows for the easy development

of pieces may be worth more than a pawn structure that is

more cramped.

The actual value of each piece is also considered. In general, a

queen is worth nine points, a rook is worth five points, a

bishop and knight are worth three points each, and a pawn is

worth one point. However, the actual value of each piece can

vary depending on the position of the pieces and the overall

situation on the board. For example, a bishop may be more

valuable than a knight in an open position with many

diagonals, while a knight may be more valuable in a

closed position with many pawns.

Once the evaluation function has assigned a score to each

possible position, the search algorithm is used to determine

the best move. The Minimax algorithm works by recursively

evaluating the score of each possible move and selecting the

move that leads to the best outcome. In other words, the

engine considers all possible moves at each level and

evaluates the best move based on the score generated by the

evaluation function.

Alpha-beta pruning is then used to discard positions that are

guaranteed to be worse than a previously evaluated position,

which greatly reduces the number of positions that need to be

evaluated. Alpha-beta pruning works by tracking two values,

alpha and beta, that represent the best possible score for the

maximizing player and the worst possible score for the

minimizing player, respectively. As the engine evaluates each

move, it updates the alpha and beta values accordingly.

If a move leads to a score worse than the current alpha or beta

value, it is discarded, as it is guaranteed to be worse than a

previously evaluated position.

Finally, the selection of the top 50 percent of possible moves

based on a trained dataset is used to further improve the

engine's performance.

This dataset is created by analysing thousands of games

played by the winners and labelling their moves as good. The

possible legal moves that could have been played but weren’t

labelled as bad. The engine then takes the top 50 percent of

moves in order of their good percentage and considers only

those moves during its search. This technique greatly reduces

the number of positions that need to be evaluated, further

improving the engine's performance.

So, a chess engine that uses Minimax search with alpha-beta

pruning and selective consideration of only the top 50 percent

of possible moves, with the evaluation function calculated by

assigning specific positional scores and the actual value of

each piece, is a complex but highly effective system.

The evaluation function provides a means to compare

different positions, while the search algorithm and selection of

top moves enable the engine.

 Fig.3 INTERFACE

 [V] CONCLUSIONS

In conclusion, the use of Minimax search with alpha-beta

pruning and selective consideration of only the top 50 percent

of possible moves, based on a trained dataset,

has resulted in a successful chess engine. The approach of

labelling moves played by the winner as good and legal moves

that could have been played but weren't as bad has enabled the

engine to quickly evaluate the best move and improve its

performance. This technique has been used by top computer

chess engines and has shown to be effective in reducing

computation time while still achieving excellent results. As

artificial intelligence and machine learning continue to

advance, we can expect to see even more advanced chess

engines in the future that will further push the limits of what is

possible in the game of chess.

 [VI] REFERENCES

[1] Nilma Upasani, Ansh Gaikwad, Arshad Patel, Nisha

Modani, Prashanth Bijamwar, Sarvesh Patil, “Dev Zero : A

Chess Engine”, 2021 International Conference on

Communication information and Computing Technology

(ICCICT)2021.

[2] Varsha Shrivastava, Siddhant Mishra, Himanshu Panchal,

“Chess Moves Prediction using Deep Learning Neural

Networks”.

[3] “Deep Learning Neural Networks” (2021),

 doi:10.1109/ICACC-202152719.2021.9708405.

[4] Paul Grunke, “Chess AI and epistemic opacity”,

Informacios Tarsadalom, May 2020

 doi:http://dx.doi.org/10.22503/inftars.XIX.2019.4.1

[5] Victor Sim, “Implementing a Deep Learning Chess Engine”

[6]. Steven James, George Konidaris, Benjamin Rosman, “An

Analysis of Monte Carlo Search”, Proceedings of the Thirty-

First AAAI Conference on Artificial Intelligence (AAAI-17)

At:SanFrancisco,USA,2017.

[7]. Eli David, Nathan S. Netanyahu, Lior Wolf, “DeepChess:

End to End Deep Neural Network for Automatic Learning in

Chess”, International Conference on Artificial Neural

Networks (ICANN), Springer LNCS, Vol. 9887, pp. 88-96,

Barcelona,Spain,2016,

doi:https://doi.org/10.48550/arXiv.1711.09667 .

http://dx.doi.org/10.22503/inftars.XIX.2019.4.1
http://dx.doi.org/10.22503/inftars.XIX.2019.4.1
https://doi.org/10.48550/arXiv.1711.09667

