
CONTAINERIZATION OF
A MULTI TIER WEB

APPLICATION

ID:20191ISE0097

NAME MANJUSHA.S. N

INFORMATION SCIENCE ENGINEERING

PRESIDENCY UNIVERSITY

BENGALURU

Email: manjushasn16@gmail.com

ABSTRACT

Containerization is a popular technology that

allows developers to package their applications

and dependencies into lightweight, portable

containers that can be easily deployed and run

on any platform. Docker is a leading

containerization platform that has gained

widespread adoption in recent years due to its

ease of use and flexibility.

In this project report, I explored the

containerization of multi-tier web applications

using Docker. Multi-tier web applications are

complex applications that consist of multiple

tiers, each with its own set of dependencies and

requirements. Containerization offers several

benefits for deploying and managing these

applications, including simplified deployment,

improved scalability, and increased

portability.I begin by providing an overview of

the architecture of multi-tier web applications

and the challenges associated with deploying

and scaling them. When introduce Docker and

provide an overview of its architecture and

components. We explain how Docker works

and its advantages, including improved

resource utilization, simplified deployment,

and increased flexibility. Next, I discuss the

process of containerizing a multi-tier web

application using Docker. I explain how to

package each tier of the application into a

separate container and how to configure the

containers to work together Finally, I discuss

how to deploy and scale a containerized multi-

tier web application using Docker. I also

explain how to use Docker Compose to

orchestrate the deployment of the containers

and how to use Docker Swarm to scale the

application horizontally. The benefits of these

tools, including improved scalability, fault

tolerance, and availability.

In conclusion, containerization using Docker

offers several benefits for deploying and

managing multi-tier web applications. It

provides a flexible and portable environment

for running applications, improves resource

utilization, simplifies deployment, and offers

improved scalability and fault tolerance. As

containerization continues to gain popularity, it

is important for developers to understand its

benefits and how to leverage it in their

applications.

Keywords used: Multi Tier Web Application,

vagrant, virtual box , GIT bash, SQL,

Tomcat, Nginx, Automation.

Introduction

Containerization has revolutionized the

process of software development and

deployment, and Docker has emerged as a

leading technology in this field. Docker

provides a platform for developers and

system administrators to create, deploy, and

run applications in isolated containers,

ensuring that they are portable and easily

scalable. Multi-tier web applications are

complex applications that consist of

multiple tiers, each with its own set of

dependencies and requirements. These

applications typically include a frontend

tier, a backend tier, and a database tier. Each

tier has specific dependencies and

requirements that must be met in order for

the application to function properly.

Deploying and managing multi-tier web

applications can be a challenging task, and

traditional deployment methods can be

time-consuming and error-prone.

 By the end of this report, readers will have

a clear understanding of the importance of

containerization and how Docker can help

to streamline the process of developing

multi-tier web applications.

1.1 Problem Statement

• Deploying and managing multi-tier

web applications can be a

challenging task, as each tier has

specific dependencies and

requirements that must be met.

• Scaling multi-tier web applications

can also be a challenge, as each tier

must be scaled independently to

ensure optimal performance and

availability.

• Portability is also an issue, as

moving the application between

different platforms and

environments can be difficult and

time-consuming.

• Containerization using Docker

offers a solution to these challenges

by providing a high degree of

isolation between application tiers,

simplifying the deployment process,

improving scalability, and offering

increased portability.

1.2 Objectives

I. To package each tier of the multi-

tier web application into a separate

container, providing a high degree

of isolation between the tiers.

II. To simplify the deployment process

by ensuring a consistent

environment for running the

application across different

deployment instances.

III. To improve the scalability of the

application by allowing each tier to

be independently scaled as needed to

meet the demands of the application.

IV. To increase the portability of the

application by making it easier to

move between different platforms

and environments.

V. To leverage the benefits of

containerization using Docker to

improve the performance,

availability, and manageability of

multi-tier web applications.

LITERATURE SURVEY

Containerization has revolutionized the

way applications are deployed and

managed. Docker, in particular, has

emerged as a leading containerization

platform due to its ease of use and

flexibility. Multi-tier web applications can

benefit greatly from containerization using

Docker, as it provides a high degree of

isolation between application tiers,

simplifies deployment, improves

scalability, and offers increased portability.

In this literature survey, we will explore

some of the key research and best practices

related to containerization of multi-tier web

applications using Docker.

2.1 Related Work:

Several studies have been conducted to

evaluate the effectiveness of

containerization for multi-tier web

applications. For example, in a study

conducted by Liu et al. (2018), the authors

evaluated the performance and scalability

of a multi-tier web application deployed

using Docker containers. They found that

the containerized deployment offered

significantly better performance and

scalability compared to a traditional virtual

machine-based deployment. Similarly, in a

study conducted by Nguyen et al. (2019),

the authors evaluated the performance of a

multi-tier web application deployed using

Docker containers and found that it

provided better performance and scalability

than traditional deployment methods.

2.2 Case Studies:

Several companies have successfully

implemented containerization for their

multi-tier web applications using Docker.

For example, in a case study conducted by

Docker, the online marketplace Etsy

reported significant improvements in

performance and scalability after migrating

their application to a containerized

deployment using Docker. They were able

to achieve faster deployment times, better

resource utilization, and improved

reliability.

Another example is the case of Netflix,

which has implemented a microservices

architecture using Docker containers to

manage their complex, distributed

application infrastructure. According to a

report by TechTarget, Netflix reported

significant improvements in scalability and

availability after implementing their

containerization strategy. They were able to

achieve faster time to market for new

features, better resource utilization, and

improved fault tolerance.

Docker provides many benefits for

deploying and managing multi-tier web

applications, including improved

scalability, portability, and manageability.

While there are some security risks

associated with containerization, these can

be mitigated by following established best

practices. Several case studies have

demonstrated the effectiveness of

containerization for multi-tier web

applications, and it's expected that

containerization will become increasingly

popular in the years to come.

2.3 Existing System

The existing system for deploying a multi-

tier web application involves manually

configuring and deploying each component

on a virtual machine using technologies

such as nginx, Tomcat, RabbitMQ,

memcached and SQL Server. This approach

can be time-consuming and error-prone,

especially when deploying to multiple

environments with different configurations.

Moreover, scaling the application can be

difficult, as each component must be

manually replicated and distributed across

multiple hosts. This can lead to

inconsistencies between instances, which

can impact the reliability and performance

of the application. Finally, managing the

application can be challenging, as there is

no centralized tool for monitoring and

managing the various components. This can

make it difficult to diagnose and fix issues

when they arise.

METHODOLGY

3.1 Proposed Method

The proposed system for containerization of

a multi-tier web application using Docker

involves deploying the application

components on a virtual machine, manually

configuring each component, and then

containerizing each component in a

separate Docker container. This approach

offers benefits in terms of portability,

scalability, and ease of management, as the

resulting Docker containers can be easily

moved between environments and managed

using Docker tools. Containerizing the

application components using Docker

allows for greater portability, as each

component is packaged in its own container

with its own set of dependencies and

configuration. This makes it easier to move

the application between environments, such

as from development to production.

Moreover, containerization allows for

easier scaling, as each component can be

easily replicated and distributed across

multiple hosts. This can help to improve the

performance and reliability of the

application by ensuring that there are

always enough resources available to

handle user requests.

Finally, containerization using Docker

provides tools for monitoring and managing

containers, making it easier to diagnose and

fix issues with the application.

TOOLS AND TECHNOLOGIES

Containerization has become an

increasingly popular approach to deploying

and managing applications. By

encapsulating an application and its

dependencies in a container the key

technologies involved in containerization of

multi-tier web applications using Docker,

including Vagrant, VirtualBox, Git Bash,

Nginx, Tomcat, RabbitMQ, Memcached,

SQL Server, and Docker.

FIG[1] Technologies

SERVICES ARCHITECTURE

The multi-tier application architecture on

VM using nginx, Tomcat, RabbitMQ,

Memcached, and SQL Server consists of

several layers, each with its own set of

responsibilities. The following diagram

illustrates the system architecture of this

multi-tier application:

• The first layer of the architecture is

the Presentation Layer, which

consists of the Nginx web server.

Nginx is responsible for handling

incoming HTTP requests and

forwarding them to the Application

Layer. It also handles SSL/TLS

termination and load balancing

across multiple application servers.

• The second layer is the Application

Layer, which consists of the Tomcat

application server. Tomcat is

responsible for processing incoming

requests, executing application code,

and generating responses. It

communicates with the RabbitMQ

message broker to handle

asynchronous processing and with

the Memcached caching system to

improve performance.

• The third layer is the Data Layer,

which consists of the SQL Server

relational database. SQL Server is

responsible for storing and retrieving

data used by the application. It

communicates with the Application

Layer using SQL queries.

• Each layer of the architecture

communicates with the others

through well-defined interfaces. The

Presentation Layer communicates

with the Application Layer using

HTTP requests and responses, while

the Application Layer communicates

with the Data Layer using SQL

queries. The Application Layer also

communicates with the RabbitMQ

message broker to handle

asynchronous processing and with

the Memcached caching system to

improve performance.

• The deployment of this multi-tier

application on a VM can be complex.

Each layer of the architecture must be

installed and configured correctly,

and proper tools and processes must

be in place to manage the

deployment, configuration, and

monitoring of the application.

FIG[2] Services Architecture

SYSTEM ARCHITECTURE
The system architecture for using Docker,

Vagrant, and Git Bash could look like the

following:

Docker, Vagrant, and Git Bash System

Architecture

The architecture consists of three main

components: Vagrant, Docker, and Git

Bash.

Vagrant is used to manage the virtual

machines (VMs) where the multi-tier web

application will be deployed. Vagrant

creates and configures the VMs using

VirtualBox, and then provisions them with

the necessary software, including Docker

and Git Bash. It is used as a command-line

interface (CLI) for interacting with the VMs

and Docker containers. It provides a Unix-

like shell environment that allows for easy

management of the VMs and containers.

Docker is used to containerize the

individual components of the multi-tier web

application, including Nginx, Tomcat,

RabbitMQ, Memcached, and SQL Server.

Each component is packaged in its own

Docker container, with its own set of

dependencies and configuration. Each

Docker container runs its own instance of

the component, isolated from other

containers and with its own set of

dependencies. This approach allows for a

high degree of flexibility, portability, and

scalability in deploying and managing the

multi-tier web application.

Overall, the system architecture for using

Docker, Vagrant, and Git Bash involves

Vagrant managing the VMs where the

Docker containers will be deployed, Docker

containerizing the individual components

of the multi-tier web application, and Git

Bash serving as a CLI for managing the

VMs and containers.

FIG[3] System Architecture

FIG[4] Detailed Architecture

IMPLEMENTATION

Provisioning a multi-tier application

manually

Provisioning the multi-tier application

setup for this project involves setting up

virtual machines (VMs) for each

component, including Nginx, Tomcat,

RabbitMQ, Memcached, and SQL Server.

The VMs are configured with the

appropriate operating system, firewall

rules, and security settings. Subsequently,

each component is installed and configured

on its respective VM, including Nginx for

load balancing, Tomcat for hosting the

application, RabbitMQ for message

queuing, Memcached for caching, and SQL

Server for the database. Proper testing,

monitoring, and troubleshooting are also

crucial to ensure the smooth functioning of

the application.

Step 1: Create and Configure VMs

The first step is to create and configure

VMs for each layer of the application. For

this architecture, we will need at least four

VMs: one for Nginx, two for Tomcat, and

one for SQL Server.

Step 2: Install and Configure Nginx

Nginx is installed on the dedicated Nginx

VM by downloading and installing the

package using the package manager. The

Nginx configuration files are updated to

proxy requests to the Tomcat instances

running on other VMs.

Step 3: Install and Configure Tomcat

Tomcat, the Java Servlet Container, is

installed on the dedicated Tomcat VM by

downloading the latest stable release from

the official Apache Tomcat website. The

installation process involves extracting the

downloaded archive and configuring

Tomcat to run as a service. The necessary

environmental variables are set, such as

JAVA_HOME, to point to the Java

Development Kit (JDK) installation.

Tomcat is then started and monitored to

ensure smooth operation of the VProfile

application.

Step 4: Install and Configure RabbitMQ

RabbitMQ, the open-source message

broker, is installed on the dedicated

RabbitMQ VM by downloading and

installing the appropriate package for the

operating system. The installation process

involves setting up the RabbitMQ server,

creating the necessary virtual hosts,

exchanges, and queues for message

handling.

Step 5: Install and Configure

Memcached

The installation process involves setting up

the Memcached daemon with the desired

configuration, including the maximum

memory allocation, listening IP address,

and port number.

Step 6: Install and Configure SQL Server

SQL Server, the relational database

management system, is installed on the

dedicated SQL Server VM by downloading

and installing the appropriate version for

the operating system. The installation

process involves configuring the SQL

Server instance, setting up the necessary

databases, creating user accounts, and

setting appropriate permissions.

Database created here was accounts

FIG[5] Database Setup

Step-7: Setup Docker Engine
I created an Ubuntu machine with
Vagrant to run my Docker
commands. Created a new directory

docker-engine.

FIG[6] Docker Setup on VM

Step-8: Dockerfile References
I used IntelliJ while creating my images.

Firstly ,I cloned the repository in the

same directory that I have created my

Vagrantfile, this will give me chance to

quickly test Docker images that I would

create for my application services.

1. Dockerfile for App Image[TOMCAT]-

Create a directory under Docker-

files directory.Copy below content

to a file named as Dockerfile.

FIG[7] Dockerfile for TOMCAT

1. Dockerfile for DB Image[MYSQL]-

Same as creating for Tomcat. We need

to copy db_backup.sql

from src/main/resources directory

to db directory where our DB

Dockerfile exists.

FIG[8] Dockerfile for MYSQL

2. Dockerfile for Web image [NGINX]:

We will create our own

nginxvproapp.conf file

under web directory with content

below, and replaced in the container

with default config file.

FIG[9] Dockerfile for NGINX

FIG[10] NGINX Configuration

Step-9: Building Images
Before building the images, I need to have

my artifact in the target

directory target/vprofile-v2.war.To be able

to create our artifact I should have Maven

and JDK installed.

FIG[11] Building image directory

FIG[12] Application Properties

Configuration

After the configuration I built App,DB

,Memched and Rabbitmq by using the

following command and don’t need any

customization for RabbitMQ &

Memcached image directly pulled image

from the dockerhub.

FIG[13] Docker Images

Step-9: Setting up Docker-

Compose
I created a docker-compose.yml file in
the root directory which would create
the containers.

FIG[14] Docker yml

Step-9: Run Containers & Test

In the folder where I had docker yml

I executed the command:

Docker-compose up

After this using the IP address I

checked If the application is working

fine and then the login page

appeared.

FIG[15] login page

Step-10: Push images to docker

hub

Once I got a Login
Successful message, we can push the
images I built using the following
commands:
docker push

<dockerhub_username>/vprofiledb:V1

docker push

<dockerhub_username>/vprofileapp:V1

docker push

<dockerhub_username>/vprofileweb:V1

Thus the images are being pushed to

docker hub and from this I can infer that

applications are being containerized.

CONCLUSION

Containerization has become a popular

approach for deploying and managing

applications in a lightweight, portable, and

scalable manner. Docker, with its

containerization technology, provides a

powerful solution for creating, managing,

and running containers for multi-tier web

applications.

One of the key benefits of Docker for multi-

tier web applications is its portability.

Docker containers encapsulate the

application and its dependencies into a

single, portable unit that can be run

consistently across different environments,

such as development, testing, staging, and

production. This allows for seamless

migration of applications between different

hosts and platforms, eliminating the "it

works on my machine" problem. Docker

enables easy scaling of applications

horizontally by spinning up multiple

containers of the same image, thereby

distributing the load across multiple

instances of the application. This allows for

efficient resource utilization and improved

performance.

Docker also provides process-level

isolation, allowing each container to run

independently without affecting other

containers or the host system. This ensures

that applications are isolated from each

other, reducing the risk of conflicts and

increasing security. Reproducibility is

another key benefit of Docker, as Docker

images are built from Dockerfiles, which

are version-controlled and can be easily

shared and reproduced. This ensures

consistency and reproducibility of the

application stack across different

environments, simplifying deployment and

maintenance.

Flexibility is also a significant advantage of

using Docker for containerizing multi-tier

web applications. Docker allows for easy

composition of multiple containers to create

complex multi-tier applications with

separate containers for each component,

such as nginx, Tomcat, RabbitMQ,

memcached, and SQL Server. This enables

flexibility in building and managing

applications, allowing for modular and

scalable architectures. Docker also provides

a wide range of management commands

and tools for managing containers, such as

Docker CLI, Docker Compose, and Docker

Swarm, which simplify container

deployment, monitoring, scaling, and

maintenance tasks.

In conclusion, containerizing multi-tier web

applications using Docker offers numerous

benefits in terms of portability, scalability,

isolation, reproducibility, flexibility, and

simplified management. Docker provides a

robust solution for deploying and managing

complex web applications in a consistent

and efficient manner, while also enhancing

security and resource utilization. Docker

has gained widespread adoption in the

software development community due to its

versatility, ease of use, and compatibility

with existing technologies, such as Vagrant,

VirtualBox, and Git Bash.

As the demand for scalable and portable

application deployment continues to grow,

Docker remains a valuable tool for

containerizing multi-tier web applications,

offering numerous advantages for modern

software development and operations. By

leveraging Docker's capabilities,

organizations can achieve faster and more

efficient deployment of multi-tier web

applications, improved scalability,

increased security, and simplified

management of containerized applications.

 Docker has emerged as a powerful solution

for containerizing multi-tier web

applications, offering numerous benefits for

modern software development and

operations. Its portability, scalability,

isolation, reproducibility, flexibility, and

simplified management make it a popular

choice among developers and operators

alike. By leveraging Docker's capabilities,

organizations can achieve faster and more

efficient deployment of applications,

improved scalability, increased security,

and simplified management of

containerized applications, making it a

valuable tool in modern software

development and operations.

FIG[20]Containerized images in Docker

Hub account

FUTURE WORK

The future work in containerizing multi-tier

web applications using Docker involves

several key areas of focus. Firstly, enhanced

orchestration and management using

Docker Swarm can be explored to further

streamline the deployment and scalability

of containerized applications. This may

involve implementing auto-scaling, load

balancing, service discovery, and rolling

updates, among other features, to efficiently

manage large-scale containerized

applications.

• Secondly, there is room for

improvement in the security of

containerized applications, and

future work could involve exploring

and implementing additional security

measures. This may include

container image scanning for

vulnerabilities, runtime monitoring,

and access control mechanisms to

ensure the security of multi-tier web

applications deployed using Docker.

• Thirdly, integrating Docker with

other cloud-native technologies such

as Kubernetes, Istio, and Prometheus

could be a focus for future work. This

could enable seamless deployment

and management of containerized

applications in cloud environments,

taking advantage of advanced

features such as auto-scaling, service

mesh, and observability.

Performance optimization is another area of

future work, where efforts could be directed

towards optimizing container performance

in terms of startup time, container image

size, and container networking

performance. This could result in even

faster and more efficient deployment and

execution of containerized applications.

Furthermore, Docker can be further

integrated into DevOps workflows, such as

incorporating Docker images into CI/CD

pipelines, implementing automated testing

and validation of containerized

applications, and using Docker-based

environments for development, testing, and

staging.

Supporting edge computing is another area

of future work, where containers can be

used to deploy and manage applications at

the edge of the network, closer to end-users

or IoT devices. This could involve

exploring and integrating Docker into edge

computing environments, enabling efficient

and scalable deployment of multi-tier web

applications in edge computing scenarios.

Lastly, continuous improvement and

innovation in the use of Docker for

containerizing multi-tier web applications

is crucial. Staying up-to-date with the latest

Docker releases, updates, and best

practices, and continuously experimenting

with different deployment patterns,

exploring new Docker features, and

incorporating feedback from real-world

deployments can lead to ongoing

optimizations and advancements in the field

of containerization for multi-tier web

applications.

In conclusion, the future work in

containerizing multi-tier web applications

using Docker involves exploring enhanced

orchestration and management, improving

security, integrating with cloud-native

technologies, optimizing performance,

integrating with DevOps practices,

supporting edge computing, and

continuously improving and innovating in

the use of Docker. With Docker's dynamic

nature and active community, there are

ample opportunities for further

advancements and optimizations in the field

of containerization for multi-tier web

applications.

REFERENCES
1) Leite, Leonardo, et al. "A survey of DevOps

concepts and challenges." ACM Computing

Surveys (CSUR) 52.6 (2019): 1-35.

2) Bellavista, Paolo, and Alessandro Zanni.

"Feasibility of fog computing deployment

based on docker containerization over

raspberrypi." Proceedings of the 18th

international conference on distributed

computing and networking. 2017.

3) Turnbull, James. The Docker Book:

Containerization is the new virtualization.

James Turnbull, 2014.

4) Hardikar, Sanjay, Pradeep Ahirwar, and

Sameer Rajan. "Containerization: cloud

computing based inspiration Technology for

Adoption through Docker and

Kubernetes." 2021 Second International

Conference on Electronics and Sustainable

Communication Systems (ICESC). IEEE,

2021.

5) Chung, Minh Thanh, et al. "Using docker in

high performance computing

applications." 2016 IEEE Sixth

International Conference on

Communications and Electronics (ICCE).

IEEE, 2016.

6) Zampetti, Fiorella, et al. "Ci/cd pipelines

evolution and restructuring: A qualitative

and quantitative study." 2021 IEEE

International Conference on Software

Maintenance and Evolution (ICSME). IEEE,

2021.

7) Qian, Ling, et al. "Cloud computing: An

overview." Cloud Computing: First

International Conference, CloudCom 2009,

Beijing, China, December 1-4, 2009.

Proceedings 1. Springer Berlin Heidelberg,

2009.

8) Iqbal, Waheed, et al. "Adaptive resource

provisioning for read intensive multi-tier

applications in the cloud." Future

Generation Computer Systems 27.6 (2011):

871-879.

9) Casalicchio, Emiliano, and Vanessa

Perciballi. "Measuring docker performance:

What a mess!!!." Proceedings of the 8th

ACM/SPEC on International Conference on

Performance Engineering Companion. 2017.

