CONTAINERIZATION OF
A MULTI TIER WEB
APPLICATION

ID:201911SE0097
NAME MANJUSHA.S. N
INFORMATION SCIENCE ENGINEERING
PRESIDENCY UNIVERSITY
BENGALURU
Email: manjushasn16@gmail.com

ABSTRACT

Containerization is a popular technology that
allows developers to package their applications
and dependencies into lightweight, portable
containers that can be easily deployed and run
on any platform. Docker is a leading
containerization platform that has gained
widespread adoption in recent years due to its
ease of use and flexibility.

In this project report, | explored the
containerization of multi-tier web applications
using Docker. Multi-tier web applications are
complex applications that consist of multiple
tiers, each with its own set of dependencies and
requirements. Containerization offers several
benefits for deploying and managing these
applications, including simplified deployment,
improved scalability, and increased
portability.l begin by providing an overview of
the architecture of multi-tier web applications
and the challenges associated with deploying
and scaling them. When introduce Docker and
provide an overview of its architecture and
components. We explain how Docker works

and its advantages, including improved
resource utilization, simplified deployment,
and increased flexibility. Next, I discuss the
process of containerizing a multi-tier web
application using Docker. | explain how to
package each tier of the application into a
separate container and how to configure the
containers to work together Finally, I discuss
how to deploy and scale a containerized multi-
tier web application using Docker. 1 also
explain how to use Docker Compose to
orchestrate the deployment of the containers
and how to use Docker Swarm to scale the
application horizontally. The benefits of these
tools, including improved scalability, fault
tolerance, and availability.

In conclusion, containerization using Docker
offers several benefits for deploying and
managing multi-tier web applications. It
provides a flexible and portable environment
for running applications, improves resource
utilization, simplifies deployment, and offers
improved scalability and fault tolerance. As
containerization continues to gain popularity, it
Is important for developers to understand its
benefits and how to leverage it in their
applications.

Keywords used: Multi Tier Web Application,
vagrant, virtual box , GIT bash, SQL,
Tomcat, Nginx, Automation.

Introduction

Containerization has revolutionized the
process of software development and
deployment, and Docker has emerged as a
leading technology in this field. Docker
provides a platform for developers and
system administrators to create, deploy, and
run applications in isolated containers,
ensuring that they are portable and easily
scalable. Multi-tier web applications are
complex applications that consist of
multiple tiers, each with its own set of
dependencies and requirements. These
applications typically include a frontend

tier, a backend tier, and a database tier. Each
tier has specific dependencies and
requirements that must be met in order for
the application to function properly.

Deploying and managing multi-tier web
applications can be a challenging task, and
traditional deployment methods can be
time-consuming and error-prone.

By the end of this report, readers will have
a clear understanding of the importance of
containerization and how Docker can help
to streamline the process of developing
multi-tier web applications.

1.1 Problem Statement

e Deploying and managing multi-tier
web applications can be a
challenging task, as each tier has
specific dependencies and
requirements that must be met.

e Scaling multi-tier web applications
can also be a challenge, as each tier
must be scaled independently to
ensure optimal performance and
availability.

e Portability is also an issue, as
moving the application between
different platforms and
environments can be difficult and
time-consuming.

e Containerization using Docker
offers a solution to these challenges
by providing a high degree of
isolation between application tiers,
simplifying the deployment process,
improving scalability, and offering
increased portability.

1.2 Objectives

I. To package each tier of the multi-
tier web application into a separate
container, providing a high degree
of isolation between the tiers.

I1. To simplify the deployment process
by ensuring a consistent

environment for running the
application across different
deployment instances.

1. To improve the scalability of the
application by allowing each tier to
be independently scaled as needed to
meet the demands of the application.

IV. To increase the portability of the
application by making it easier to
move between different platforms
and environments,

V. To leverage the benefits of
containerization using Docker to
improve the performance,
availability, and manageability of
multi-tier web applications.

LITERATURE SURVEY

Containerization has revolutionized the
way applications are deployed and
managed. Docker, in particular, has
emerged as a leading containerization
platform due to its ease of use and
flexibility. Multi-tier web applications can
benefit greatly from containerization using
Docker, as it provides a high degree of
isolation between application tiers,
simplifies deployment, improves
scalability, and offers increased portability.
In this literature survey, we will explore
some of the key research and best practices
related to containerization of multi-tier web
applications using Docker.

2.1 Related Work:

Several studies have been conducted to
evaluate the effectiveness of
containerization for multi-tier web
applications. For example, in a study
conducted by Liu et al. (2018), the authors
evaluated the performance and scalability
of a multi-tier web application deployed
using Docker containers. They found that
the containerized deployment offered

significantly better performance and
scalability compared to a traditional virtual
machine-based deployment. Similarly, in a
study conducted by Nguyen et al. (2019),
the authors evaluated the performance of a
multi-tier web application deployed using
Docker containers and found that it
provided better performance and scalability
than traditional deployment methods.

2.2 Case Studies:

Several companies have successfully
implemented containerization for their
multi-tier web applications using Docker.
For example, in a case study conducted by
Docker, the online marketplace Etsy
reported significant improvements in
performance and scalability after migrating
their application to a containerized
deployment using Docker. They were able
to achieve faster deployment times, better
resource utilization, and improved
reliability.

Another example is the case of Netflix,
which has implemented a microservices
architecture using Docker containers to
manage their complex, distributed
application infrastructure. According to a
report by TechTarget, Netflix reported
significant improvements in scalability and
availability after implementing their
containerization strategy. They were able to
achieve faster time to market for new
features, Dbetter resource utilization, and
improved fault tolerance.

Docker provides many benefits for
deploying and managing multi-tier web
applications, including improved
scalability, portability, and manageability.
While there are some security risks
associated with containerization, these can
be mitigated by following established best
practices. Several case studies have
demonstrated the effectiveness of
containerization for multi-tier web

applications, and it's expected that
containerization will become increasingly
popular in the years to come.

2.3 Existing System

The existing system for deploying a multi-
tier web application involves manually
configuring and deploying each component
on a virtual machine using technologies
such as nginx, Tomcat, RabbitMQ,
memcached and SQL Server. This approach
can be time-consuming and error-prone,
especially when deploying to multiple
environments with different configurations.
Moreover, scaling the application can be
difficult, as each component must be
manually replicated and distributed across
multiple hosts. This can lead to
inconsistencies between instances, which
can impact the reliability and performance
of the application. Finally, managing the
application can be challenging, as there is
no centralized tool for monitoring and
managing the various components. This can
make it difficult to diagnose and fix issues
when they arise.

METHODOLGY
3.1 Proposed Method

The proposed system for containerization of
a multi-tier web application using Docker
involves deploying the application
components on a virtual machine, manually
configuring each component, and then
containerizing each component in a
separate Docker container. This approach
offers benefits in terms of portability,
scalability, and ease of management, as the
resulting Docker containers can be easily
moved between environments and managed
using Docker tools. Containerizing the
application components using Docker
allows for greater portability, as each
component is packaged in its own container

with its own set of dependencies and
configuration. This makes it easier to move
the application between environments, such
as from development to production.
Moreover, containerization allows for
easier scaling, as each component can be
easily replicated and distributed across
multiple hosts. This can help to improve the
performance and reliability of the
application by ensuring that there are
always enough resources available to
handle user requests.

Finally, containerization using Docker

provides tools for monitoring and managing
containers, making it easier to diagnose and
fix issues with the application.

TOOLS AND TECHNOLOGIES
Containerization ~ has become an
increasingly popular approach to deploying
and managing applications. By
encapsulating an application and its
dependencies in a container the key
technologies involved in containerization of
multi-tier web applications using Docker,
including Vagrant, VirtualBox, Git Bash,
Nginx, Tomcat, RabbitMQ, Memcached,
SQL Server, and Docker.

S
.cé S
O

/
—

J

S

J '\.\ oNiLdl)
Hsvg

FIG[1] Technologies

SERVICES ARCHITECTURE
The multi-tier application architecture on
VM using nginx, Tomcat, RabbitMQ,
Memcached, and SQL Server consists of
several layers, each with its own set of
responsibilities. The following diagram
illustrates the system architecture of this
multi-tier application:

e The first layer of the architecture is
the Presentation Layer, which
consists of the Nginx web server.
Nginx is responsible for handling
incoming HTTP requests and
forwarding them to the Application
Layer. It also handles SSL/TLS
termination and load balancing
across multiple application servers.

e The second layer is the Application
Layer, which consists of the Tomcat
application server. Tomcat is
responsible for processing incoming
requests, executing application code,
and generating responses. It
communicates with the RabbitMQ
message broker to handle
asynchronous processing and with
the Memcached caching system to
improve performance.

e The third layer is the Data Layer,
which consists of the SQL Server
relational database. SQL Server is
responsible for storing and retrieving
data used by the application. It
communicates with the Application
Layer using SQL queries.

e Each layer of the architecture
communicates with the others
through well-defined interfaces. The
Presentation Layer communicates
with the Application Layer using
HTTP requests and responses, while
the Application Layer communicates
with the Data Layer using SQL
queries. The Application Layer also

communicates with the RabbitMQ
message broker to handle
asynchronous processing and with
the Memcached caching system to
improve performance.

e The deployment of this multi-tier
application on a VM can be complex.
Each layer of the architecture must be
installed and configured correctly,
and proper tools and processes must
be in place to manage the
deployment, configuration, and
monitoring of the application.

: 1]
= ® B
3 ==

=,

FIG[2] Services Architecture

SYSTEM ARCHITECTURE
The system architecture for using Docker,
Vagrant, and Git Bash could look like the
following:

Docker, Vagrant, and Git Bash System
Architecture

The architecture consists of three main
components: Vagrant, Docker, and Git
Bash.

Vagrant is used to manage the virtual
machines (VMSs) where the multi-tier web
application will be deployed. Vagrant
creates and configures the VMs using
VirtualBox, and then provisions them with
the necessary software, including Docker
and Git Bash. It is used as a command-line
interface (CLI) for interacting with the VMs
and Docker containers. It provides a Unix-
like shell environment that allows for easy
management of the VMs and containers.

Docker is wused to containerize the
individual components of the multi-tier web
application, including Nginx, Tomcat,
RabbitMQ, Memcached, and SQL Server.
Each component is packaged in its own
Docker container, with its own set of
dependencies and configuration. Each
Docker container runs its own instance of
the component, isolated from other
containers and with its own set of
dependencies. This approach allows for a
high degree of flexibility, portability, and
scalability in deploying and managing the
multi-tier web application.

Overall, the system architecture for using
Docker, Vagrant, and Git Bash involves
Vagrant managing the VMs where the
Docker containers will be deployed, Docker
containerizing the individual components
of the multi-tier web application, and Git
Bash serving as a CLI for managing the
VMs and containers.

Apache Tomcat

%docker hub

IMAGE REPOSITORY

FIG[4] Detailed Architecture
IMPLEMENTATION

Provisioning a multi-tier application
manually

Provisioning the multi-tier application
setup for this project involves setting up
virtual machines (VMs) for each
component, including Nginx, Tomcat,
RabbitMQ, Memcached, and SQL Server.
The VMs are configured with the
appropriate operating system, firewall
rules, and security settings. Subsequently,
each component is installed and configured
on its respective VM, including Nginx for
load balancing, Tomcat for hosting the
application, RabbitMQ for message
queuing, Memcached for caching, and SQL
Server for the database. Proper testing,
monitoring, and troubleshooting are also
crucial to ensure the smooth functioning of
the application.
Step 1: Create and Configure VMs
The first step is to create and configure
VMs for each layer of the application. For
this architecture, we will need at least four
VMs: one for Nginx, two for Tomcat, and
one for SQL Server.
Step 2: Install and Configure Nginx
Nginx is installed on the dedicated Nginx
VM by downloading and installing the
package using the package manager. The
Nginx configuration files are updated to
proxy requests to the Tomcat instances
running on other VMs.
Step 3: Install and Configure Tomcat
Tomcat, the Java Servlet Container, is
installed on the dedicated Tomcat VM by
downloading the latest stable release from
the official Apache Tomcat website. The
installation process involves extracting the
downloaded archive and configuring
Tomcat to run as a service. The necessary
environmental variables are set, such as
JAVA HOME, to point to the Java
Development Kit (JDK) installation.
Tomcat is then started and monitored to

ensure smooth operation of the VProfile
application.

Step 4: Install and Configure RabbitMQ
RabbitMQ, the open-source message
broker, is installed on the dedicated
RabbitMQ VM by downloading and
installing the appropriate package for the
operating system. The installation process
involves setting up the RabbitMQ server,
creating the necessary virtual hosts,
exchanges, and queues for message
handling.
Step 5
Memcached
The installation process involves setting up
the Memcached daemon with the desired
configuration, including the maximum
memory allocation, listening IP address,
and port number.

Step 6: Install and Configure SQL Server
SQL Server, the relational database
management system, is installed on the
dedicated SQL Server VM by downloading
and installing the appropriate version for
the operating system. The installation
process involves configuring the SQL
Server instance, setting up the necessary
databases, creating user accounts, and
setting appropriate permissions.
Database created here was accounts

ect]# mysql -u root -p"$DATAB

Install and Configure

——————

FIG[5] Database Setup

Step-7: Setup Docker Engine
I created an Ubuntu machine with
Vagrant to run my Docker

commands. Created a new directory
docker-engine.

vagrant@ubuntu-bionic:~$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
vagrant@ubuntu-bionic:~$ sudo systemctl status docker
® docker.service — Docker Application Container Engine
Loaded: loaded (/lib/systemd/system/docker.service; enab
Active: active (running) since Tue 2022-12-06 17:41:23 U
Docs: https://docs.docker.com
Main PID: 20361 (dockerd)
Tasks: 9
CGroup: /system.slice/docker.service
L20361 /usr/bin/dockerd -H fd:// --containerd=/

FIG[6] Docker Setup on VM
Step-8: Dockerfile References
| used IntelliJ while creating my images.
Firstly ,I cloned the repository in the
same directory that | have created my
Vagrantfile, this will give me chance to
quickly test Docker images that | would
create for my application services.

1. Dockerfile for App Image[TOMCAT]-
Create adirectory under Docker-
files directory.Copy below content
to a file named as Dockerfile.

tomcat:8-jrell

-rf

target cal/tomcat/webapps

FIG[7] Dockerfile for TOMCAT

1. Dockerfile for DB Image[MYSQL]-
Same as creating for Tomcat. We need
copy db_backup.sql

from src/main/resources(ﬁIeCtory

to

to do directory where our DB

Dockerfile exists.

db_backup.sql docker-entrypoint-initdb.

FIG[8] Dockerfile for MYSQL
2. Dockerfile for Web image [NGINX]:

We will create our own
nginxvproapp.conf file
under web directory with content

below, and replaced in the container
with default config file.

nginx

rm -rf fetc/nginx/conf.d/default.conf

nginvproapp.conf

s http://vproapp

FIG[10] NGINX Configuration
Step-9: Building Images
Before building the images, | need to have
my artifact in the target
directory target/vprofile-v2.war.To be able
to create our artifact | should have Maven

and JDK installed.

etc/nginx/conf.d/vproapp.c

vagrant@ubuntu-bionic:/vagrant/vprofile-project$ version: '3°

/USr/bin/java services:
- - - - vprodb:
vagrant@ubuntu-bionic: /vagrant/vprofile-project$ image: kubeirving/vprofiledb:vi
Apache Maven 3.6.0 PO oe: 2s06"
Maven home: /usr/share/maven vellomess
Java version: 1.8.0_352, vendor: Private Build, *_Vprodbiata=/Varflib/mysql
. . environment:
njdk-amd64/jre - MYSQL_ROOT_PASSWORD=vprodbpass

Default locale: en, platform encoding: UTF-8 heod
0S name: "linux", version: "4.15.0-197-generic", “piﬁggz:emegcached

vagrant@ubuntu-bionic: /vagrant/vprofile-project$ PEFESE .
= 112171 :11211

vpromgel:
image: rabbitmgq
ports:
- "15672:15672"
environment:
- RABBITMQ_DEFAULT_USER=guest
- RABBITMQ_DEFAULT_PASS=guest

vproapp:
image: kubeirving/vprofileapp:Vvi1l
ports:
- "sese:s8ese"
volumes:
- wvproappdata: /usr/local/tomcat/webapps

vproweb:
image: kubeirving/vprofileweb:vi1
ports:
- "8e:80"
volumes:
vprodbdata: {}

FIG[12] Application Properties vproappdata: ()|
Configuration FIG[14] Docker yml

After the configuration | built App,DB Step-9: Run Containers & Test
JMemched and Rabbitmq by using the In the folder where I had docker yml
following command and don’t need any | executed the command:
customization for RabbitMQ & Docker-compose up
Memcached image directly pulled image A fter this using the IP address |
from the dockerhub. T -
checked If the application is working
fine and then the login page

REPOSITORY TAG IMAGE ID

kubeirving/vprofileweb V1 ba69332a496e ap peared .

kubeirving/vprofiledb Vi e38ac5c540e7

kubeirving/vprofileapp V1 90219489b09f bl Al ® el

memcached latest 381c6822efbc

nginx latest a99a39d070bf

rabbitmq latest bcldS5@el4e2e

tomcat 8-jrell b1594d9b8c19 LOGIN

mysql 5.7.25 98455b9624a9 <z Visual

r : v PATH
FIG[13] Docker Images

Step-9: Setting up Docker- ‘
Compose LoGN.
I Created a docker—compose o yml file iIl Create an account
the root directory which would create
the containers. FIG[15] login page

Step-10: Push images to docker
hub

Once I got
successful message, we can push the
images I built using the following
commands:

d Login

docker push
<dockerhub_username>/vprofiledb:V1
docker push

<dockerhub_username>/vprofileapp:V1
docker push
<dockerhub_username>/vprofileweb:V1

Thus the images are being pushed to
docker hub and from this I can infer that
applications are being containerized.

CONCLUSION

Containerization has become a popular
approach for deploying and managing
applications in a lightweight, portable, and
scalable manner. Docker, with its
containerization technology, provides a
powerful solution for creating, managing,
and running containers for multi-tier web
applications.

One of the key benefits of Docker for multi-
tier web applications is its portability.
Docker containers encapsulate the
application and its dependencies into a
single, portable unit that can be run
consistently across different environments,
such as development, testing, staging, and
production. This allows for seamless
migration of applications between different
hosts and platforms, eliminating the "it
works on my machine" problem. Docker
enables easy scaling of applications
horizontally by spinning up multiple
containers of the same image, thereby
distributing the load across multiple
instances of the application. This allows for
efficient resource utilization and improved
performance.

Docker also provides process-level
isolation, allowing each container to run
independently without affecting other
containers or the host system. This ensures
that applications are isolated from each
other, reducing the risk of conflicts and
increasing security. Reproducibility is
another key benefit of Docker, as Docker
images are built from Dockerfiles, which
are version-controlled and can be easily
shared and reproduced. This ensures
consistency and reproducibility of the
application stack across different
environments, simplifying deployment and
maintenance.

Flexibility is also a significant advantage of
using Docker for containerizing multi-tier
web applications. Docker allows for easy
composition of multiple containers to create

complex multi-tier applications with
separate containers for each component,
such as nginx, Tomcat, RabbitMQ,

memcached, and SQL Server. This enables
flexibility in building and managing
applications, allowing for modular and
scalable architectures. Docker also provides
a wide range of management commands
and tools for managing containers, such as
Docker CLI, Docker Compose, and Docker
Swarm, which simplify container
deployment, monitoring, scaling, and
maintenance tasks.

In conclusion, containerizing multi-tier web
applications using Docker offers numerous
benefits in terms of portability, scalability,
isolation, reproducibility, flexibility, and
simplified management. Docker provides a
robust solution for deploying and managing
complex web applications in a consistent
and efficient manner, while also enhancing
security and resource utilization. Docker
has gained widespread adoption in the
software development community due to its
versatility, ease of use, and compatibility

with existing technologies, such as Vagrant,
VirtualBox, and Git Bash.

As the demand for scalable and portable
application deployment continues to grow,
Docker remains a valuable tool for
containerizing multi-tier web applications,
offering numerous advantages for modern
software development and operations. By
leveraging Docker's capabilities,
organizations can achieve faster and more
efficient deployment of multi-tier web
applications, improved scalability,
increased security, and simplified
management of containerized applications.
Docker has emerged as a powerful solution
for containerizing multi-tier web
applications, offering numerous benefits for
modern software development and
operations. Its portability, scalability,
isolation, reproducibility, flexibility, and
simplified management make it a popular
choice among developers and operators
alike. By leveraging Docker's capabilities,
organizations can achieve faster and more
efficient deployment of applications,
improved scalability, increased security,
and simplified management of
containerized applications, making it a
valuable tool in modern software
development and operations.

docker hub

Q. Search Docker Hub

manjushasn ~ Search by |

manjushasn / vprofiledb
Contains: Image | Last pushed: a month ago

manjushasn / vprofileweb
Contains: Image | Last pushed: a month ago

manjushasn / vprofileapp
Contains: Image | Last pushed: a month ago

FIG[20]Containerized images in Docker
Hub account

FUTURE WORK

The future work in containerizing multi-tier
web applications using Docker involves
several key areas of focus. Firstly, enhanced
orchestration and management using
Docker Swarm can be explored to further
streamline the deployment and scalability
of containerized applications. This may
involve implementing auto-scaling, load
balancing, service discovery, and rolling
updates, among other features, to efficiently
manage large-scale containerized
applications.

e Secondly, there is room for
improvement in the security of
containerized applications, and
future work could involve exploring
and implementing additional security
measures. This may include
container image scanning for
vulnerabilities, runtime monitoring,
and access control mechanisms to
ensure the security of multi-tier web
applications deployed using Docker.

e Thirdly, integrating Docker with
other cloud-native technologies such
as Kubernetes, Istio, and Prometheus
could be a focus for future work. This
could enable seamless deployment
and management of containerized
applications in cloud environments,
taking advantage of advanced
features such as auto-scaling, service
mesh, and observability.

Performance optimization is another area of
future work, where efforts could be directed
towards optimizing container performance
in terms of startup time, container image
size, and container networking
performance. This could result in even
faster and more efficient deployment and
execution of containerized applications.

Furthermore, Docker can be further
integrated into DevOps workflows, such as
incorporating Docker images into CI/CD
pipelines, implementing automated testing
and validation of containerized
applications, and using Docker-based
environments for development, testing, and
staging.

Supporting edge computing is another area
of future work, where containers can be
used to deploy and manage applications at
the edge of the network, closer to end-users
or loT devices. This could involve
exploring and integrating Docker into edge
computing environments, enabling efficient
and scalable deployment of multi-tier web
applications in edge computing scenarios.
Lastly, continuous improvement and
innovation in the use of Docker for
containerizing multi-tier web applications
Is crucial. Staying up-to-date with the latest
Docker releases, updates, and best
practices, and continuously experimenting
with different deployment patterns,
exploring new Docker features, and
incorporating feedback from real-world
deployments can lead to ongoing
optimizations and advancements in the field
of containerization for multi-tier web
applications.

In conclusion, the future work in
containerizing multi-tier web applications
using Docker involves exploring enhanced
orchestration and management, improving
security, integrating with cloud-native
technologies, optimizing performance,
integrating with DevOps practices,
supporting edge computing, and
continuously improving and innovating in
the use of Docker. With Docker's dynamic
nature and active community, there are
ample opportunities for further
advancements and optimizations in the field

of containerization for multi-tier web

applications.

REFERENCES

1) Leite, Leonardo, et al. "*A survey of DevOps
concepts and challenges.” ACM Computing
Surveys (CSUR) 52.6 (2019): 1-35.

2) Bellavista, Paolo, and Alessandro Zanni.
"Feasibility of fog computing deployment
based on docker containerization over
raspberrypi.” Proceedings of the 18th
international conference on distributed
computing and networking. 2017.

3) Turnbull, James. The Docker Book:
Containerization is the new virtualization.
James Turnbull, 2014.

4) Hardikar, Sanjay, Pradeep Ahirwar, and
Sameer Rajan. ""Containerization: cloud
computing based inspiration Technology for
Adoption through Docker and
Kubernetes.” 2021 Second International
Conference on Electronics and Sustainable
Communication Systems (ICESC). IEEE,
2021.

5) Chung, Minh Thanh, et al. ""Using docker in
high performance computing
applications.” 2016 IEEE Sixth
International Conference on
Communications and Electronics (ICCE).
IEEE, 2016.

6) Zampetti, Fiorella, et al. "*Ci/cd pipelines
evolution and restructuring: A qualitative
and quantitative study."" 2021 IEEE
International Conference on Software
Maintenance and Evolution (ICSME). IEEE,
2021.

7) Qian, Ling, et al. ""Cloud computing: An
overview." Cloud Computing: First
International Conference, CloudCom 20009,
Beijing, China, December 1-4, 20009.
Proceedings 1. Springer Berlin Heidelberg,
2009.

8) Igbal, Waheed, et al. **Adaptive resource
provisioning for read intensive multi-tier
applications in the cloud." Future
Generation Computer Systems 27.6 (2011):
871-879.

9) Casalicchio, Emiliano, and Vanessa
Perciballi. **"Measuring docker performance:
What a mess!!!." Proceedings of the 8th
ACM/SPEC on International Conference on
Performance Engineering Companion. 2017.

