
 SELF DRIVING CAR SIMULATION

 RESEARCH PAPER

Saheb Ahmad, Sameer Yadav, Sheshnath Pandey, Vishnu Kant Shukla , Anand Prakash Dwivedi

 Computer Science and Engineering Department,

 Maharana Pratap Group Of Institution, Kanpur

Abstract—

Rigorous and comprehensive testing plays

a key role in training self-driving cars to

handle a variety of situations that they are

expected to see on public roads. The

physical testing on public roads is unsafe,

costly, and not always reproducible. This is

where testing in simulation helps fill the

gap. However, the problem with simulation

testing is that it is only as good as the

simulator used for testing and how

representative the simulated scenarios are

of the real environment. In this paper, we

identify key requirements that a good

simulator must have. Further, we provide a

comparison of commonly used simulators.

Our analysis shows that CARLA and LGSVL

simulators are the current state-of-the-art

simulators for end to end testing of self-

driving cars for the reasons mentioned in

this paper. Finally, we present current

challenges that simulation testing

continues to face as we march towards

building fully autonomous cars.

INTRODUCTION-

According to the annual Autonomous

Mileage Report published by the California

Department of Motor Vehicles, Waymo has

logged billions of miles in testing so far. As

of 2019, the company’s self-driving cars

have driven 20 million miles on public

roads in 25 cities and additionally 15 billion

miles through computer simulations [1].

While the number of miles driven is

important, it is the sophistication and

diversity of miles accumulated that

determines and shapes the maturity of the

product [2]. Additionally, the testing

through simulation plays a key role in

supplementing and accelerating the real

world testing [1]. It allows one to test

scenarios that are otherwise highly

regulated on public roads because of

various safety concerns [3]. It is

reproducible, scalable and reduces the

development cost. There are many

simulators available for testing the

software for self-driving cars, which have

their own pros and cons.

however, there are many open source

simulators available as well. In this paper,

we compare MATLAB/Simulink, CarSim,

Pre-Scan, Gazebo, CARLA and LGSVL

simulators with the objective of studying

their performance in testing new

functionalities such as perception,

localization, vehicle control, and creation

of dynamic 3D virtual environments.

MOTIVATION AND BACKGROUND-

 The complexity of automotive software

and hardware is continuing to grow as we

progress towards building self-driving cars.

In addition to tradition testing such as

proper vehicle dynamics, crash-

worthiness, reliability, and functional

safety, there is a need to test self-driving

related algorithms and software, such as

deep learning and energy efficiency [8]. As

an example, a Volvo vehicle built in 2020

has about 100 million lines of code

according to their data [9]. This includes

code for transmission control, cruise

control, collision mitigation, connectivity,

engine control and many other basic and

advanced functionalities that come with

the cars bought today. Similarly, the cars

now have more advanced hardware, which

includes a plethora of sensors that ensure

vehicles are able to perceive the world

around them just like humans do [10].

Therefore, the complexity of the modern

age vehicle is the result of both more

advanced hardware and software needed

to process the information retrieved from

the environment and for decision making

capability. These simulators have evolved

from merely simulating vehicle dynamics

to also simulating more complex

functionalities. Table I shows various levels

of automation per the Society of

Automotive Engineers (SAE) definitions

[11], along with the evolving list of

requirements for testing that are inherent

in our path to full automation. It is

important to note that Table I focuses on

requirements that are essentially new to

testing driver assisted features and

autonomous behaviour [12]. This includes

things such as perception, localization and

mapping, control algorithms and path

planning.

Table I TESTING REQUIREMENTS TO

MEET S.A.E AUTOMATION LEVELS

 METHODOLOGY-

The emphasis of this paper is on testing

the new and highly automated

functionality that is unique to self-

driving cars. This section identifies a set

of criteria that can serve as a metric to

identify which simulators are a best fit

for the task at hand. The approach we

take to compile requirements for a

simulator is as below. Firstly, we focus

on the requirements driven by the

functional architecture of self-driving

cars [13] (Requirements 1-4). Secondly,

we focus on the requirements that must

be met in order to support the

infrastructure to drive the simulated car

in (Requirements 5-7). Thirdly, we

define the requirements that allow the

use of simulators for secondary tasks

such as data collection for further use

(Requirement 8). Finally, we list generic

requirements desired from any good

automotive simulator (Requirement 9).

1) Perception:

 Levels of Driving
Automation

Testing Requirements

Levels

Description

Level 0 No Automation:
Features are limited to,
warnings &
momentary assistance.
Examples: LDW, Blind
Spot Warning

Simulation of: Traffic flow,
multiple road terrain type, radar
and camera sensors.

Level 1 Assisted: Features
provide steering OR
brake/acceleration
control. Examples:
Lane Centering OR ACC

All of the above plus Simulation
of: vehicle dynamics, ultrasonic
sensors

Level 2 Partial Automation:
Features provide
steering AND
brake/acceleration
control. Examples:
Lane Centering AND
ACC at the same time

All of the above plus Simulation
of: driver monitoring system.
Human-machine interface

Level 3 Conditional
Automation: Features
can drive the vehicle
when all of its
conditions are met.
Examples: Traffic Jam
Assist

All of the above plus Simulation
of: Traffic infrastructure,
dynamic objects

Level 4 High Automation:
Features can drive the
vehicle under limited
conditions. No driver
intervention.
Examples: Local
Driverless taxis

All of the above plus Simulation
of: different weather
conditions, lidar, camera, radar
sensors, mapping and
localization

Level 5 Full Automation:
Features can drive the
vehicle in all conditions
and everywhere.
Examples: Full
autonomous vehicles
everywhere

All of the above plus
compliance with all the road,
rules, V2X communication

 One of the vital components of self-driving

cars is its ability to see and make sense

(perceive) the world around itself. This is

called perception. The vehicle perception is

further composed of hardware, that is

available in the form of a wide variety of

automotive grade sensors and software,

that interprets data collected by various

sensors to make it meaningful for further

decisions. The sensors that are most

prevalent in research and commercial self-

driving cars today include camera, LiDAR,

ultrasonic sensor, radar, Global Positioning

System (GPS), Inertial Measurement Unit

(IMU) [14]. In order to test a perception

system, the simulator must have realistic

sensor models and/or be able to support

an input data stream from the real sensors

for further utilization. Once the data from

these sensors is available within the

simulation environment, researchers can

then test their perception methods such as

sensor fusion [15]. The simulated

environment can also be used to guide

sensor placement in a real vehicle for

optimal perception.

 2) The multi-view geometry:

 The Simultaneous Localization and

Mapping (SLAM) is one of components of

Autonomous Driving (AD) systems that

focuses on constructing the map of

unknown environments and tracking the

location of the AD system inside the

updated map. In order to support SLAM

applications, the simulator should provide

the intrinsic and extrinsic features of

cameras. In other words, it should provide

the camera calibration. According to this

information, the SLAM algorithm can run

the multi-view geometry and estimate the

camera pose and localize the AD system

inside the global map.

3) Path Planning:

 The problem of path planning revolves

around planning a path for a mobile agent

so that it is able to move around

autonomously without collision with its

surroundings. The path planning problem

for autonomous vehicles piggy backs on

the research that has already been done in

the field of mobile robots in the last

decade. This problem is sub-divided into

local and global planning [16] where the

global planner is typically generated based

on a static map of the environment and the

local planner is created incrementally

based on the immediate surroundings of

the mobile agent. In order to create these

planners, various planning algorithms play

a key role [17]. To implement such

intelligent path planning algorithms like A*,

D* and RRT algorithms [16], the simulator

should at least have a built-in function to

build maps or have interfaces for importing

maps from outside. In addition, the

simulator should have interfaces for

programming customized algorithms.

4) Vehicle Control:

 The final step after a collision free path is

planned is to execute the predicted

trajectory as closely as possible. This is

accomplished via the control inputs such as

throttle, brake and steering [13] that are

monitored by closed loop control

algorithms [18]. The Proportional–

integral–derivative (PID) control algorithm

and Model Predictive Control (MPC)

algorithm are commonly seen in research

and industries [19]. To implement such

intelligent control algorithms, the

simulator should be capable of building

vehicle dynamic models and programming

the algorithms in mathematical forms.

 5) 3D Virtual Environment:

 In order to test various functional

elements of a car mentioned in the above

requirements, it is equally important to

have a realistic 3D virtual environment. The

perception system relies on photogenic

view of the scene to sense the virtual

world. This 3D virtual environment must

include both static objects such as

buildings, trees, etc. and dynamic objects

such as other vehicles, pedestrians,

animals, and bicyclists. Furthermore, the

dynamic objects must behave realistically

to reflect the true behaviour of these

dynamic entities in an environment. In

order to achieve 3D virtual environment

creation, simulators can either rely on

game engines or use the High Definition

(HD) map of a real environment and render

it in a simulation [5]. Similarly, in order to

simulate dynamic objects, the vehicle

simulators can leverage other domains

such as pedestrian models [20] to simulate

realistic pedestrians movement in the

scene. Furthermore, the 3D virtual

environment must support different

terrains and weather conditions that are

typical in a real environment. It is

important to note that the level of detail in

a 3D virtual environment depends on the

simulation approach taken. Some

companies such as Uber and Waymo do

not use highly detailed simulators [5].

Therefore, they do not use simulators to

test perception models. However, if the

goal is to test perception models in

simulation, then the level of detail is very

important.

6) Traffic Infrastructure:

 In addition to the requirements for a 3D

virtual environment mentioned above, it is

also important for a simulation to have the

support for various traffic aids such as

traffic lights, roadway signage, etc. [21].

This is because these aids help regulate

traffic for the safety of all road users. It is

projected that the traffic infrastructure will

evolve to support connected vehicles in the

near future [22]. However, until the

connected vehicles become a reality, self-

driving cars are expected to comply with

the same traffic rules as the human drivers.

7) Traffic Scenarios Simulation:

 The ability to create various traffic

scenarios is one of main points that

identifies whether a simulator is valuable

or not. This allows the researchers to not

only re-create/play back a real world

scenario but also allows them to test

various ”what-if” scenarios that cannot be

tested in a real environment because of

safety concerns. This criteria considers not

only the variety of traffic agents but also

the mechanisms that the simulator

provides to generate these agents.

Different types of dynamic objects consist

of humans, bicycles, motorcycles, animals,

and vehicles such as buses, trucks,

ambulances and motorcycles. In order to

generate scenes close to real world scenes,

it is important that simulator supports

significant number of these dynamic

agents. In addition, simulator should

provide a flexible API that allows users to

manage different aspects of simulation

which consists of generating traffic agents

and more complex scenarios such as

pedestrian behaviours, vehicles crashes,

weather conditions, sensor types, stops

signs, and etc.

8) 2D/3D Ground Truth:

In order to provide the training data to the

AI models, the simulator should provide

object labels and bounding boxes of the

objects appearing in the scene. The sensor

outputs each video frame where objects

are encapsulated in a box.

9) Non-functional Requirements:

 The qualitative analysis of open source

simulators includes different aspects that

can help AD developers to estimate the

learning time and the duration required for

simulating different scenarios and

experiments.

A) Well maintained/Stability:

In order to use simulator for different

experiments and testing, the simulator

should have comprehensive

documentation that makes it easy to use.

In case that maintenance teams improve

the simulator, if the backward compatibility

is not considered, the documentation

should provide the precise mapping

between the deprecated APIs and newly

added APIs.

B)Flexibility/Modular:

 Open source simulators should follow a

division of concept principle that can help

AD developers to leverage and extend

different scenarios in shorter time. In

addition, the simulator can provide a

flexible API that enables defining

customized versions of sensors, generating

new environments and adding different

agents.

C)Portability:

 If the simulator is able to run on different

types of operating systems, it enables users

to leverage the simulator more easily. Most

users may not have access to the different

types of operating systems at the same

time, therefore the simulator’s portability

can save time for the users. Scalability via a

server multi-client architecture: Scalable

architecture such as client-server

architecture enables multiple clients to run

on different nodes to control different

agents at the same time. This is helpful

specifically for simulating the congestion

and/or complex scenes.

D)Open-Source:

It is preferred that a simulator be open

source. The open source simulators enable

more collaboration, collective progress and

allows to incorporate learning from peers

in the same domain.

SIMULATORS

This section provides a brief description of

simulators that were analyzed and

compared.

A. MATLAB/Simulink

MATLAB/Simulink published Automated

Driving Tool�box™, which provides various

tools that facilitate the design, simulation

and testing of Advanced Driver Assisted

Systems (ADAS) and automated driving

systems. It allows users to test core

functionalities such as perception, path

planning, and vehicle control. One of its key

features is that HERE HD live map data [23]

and OpenDRIVE® road networks [24] can

be imported into MATLAB and these can be

used for various design and testing

purposes. Further, the users can build

photo-realistic 3D scenarios and model

various sensors. It is also equipped with a

built-in visualizer that allows to view live

sensor detection and tracks [25]. In

addition to serving as a simulation and

design environment, it also enables users

to automate the labeling of objects

through the Ground Truth Label app [26].

This data can be further used for training

purposes or to evaluate sensor

performance. MATLAB provides several

examples on how to simulate various ADAS

features including Adaptive Cruise Control

(ACC), Automatic Emergency Braking

(AEB), Automatic Parking Asisst, etc [27].

Last but not the least, the toolbox supports

Hardware In the Loop (HIL) testing and

C/C++ code generation, which enables

faster prototyping.

B. CarSim

CarSim is a vehicle simulator commonly

used by industry and academia. The

newest version of CarSim supports

mov�ing objects and sensors that benefit

simulations involving ADAS and

Autonomous Vehicles (AVs) [28]. In terms

of traffic and target objects, in addition to

simulated vehicle, there are up to 200

objects with independent locations and

motions. These objects include static

objects such as trees and buildings and

dynamic objects such as pedestrians,

vehicles, animals, and other objects of

interest for ADAS scenarios.

C. Gazebo

 Gazebo is an open source, scalable,

flexible and multi�robot 3D simulator [31].

It is supported on multiple operating

systems, including Linux and Windows. It

supports the recreation of both indoor and

outdoor 3D environments. Gazebo relies

on three main libraries, which include,

physics, rendering, and a communication

library. Firstly, the physics library allows the

simulated objects to behave as realistically

as possible to their real counterparts by

letting the user define their physical

properties such as mass, friction

coefficient, velocity, inertia, etc. Gazebo

uses Open Dynamic Engine (ODE) as its

default physics engine but it also supports

others such as Bullet, Sim-body and

Dynamic Open Source Physics Engine

(DART). Secondly, for visualization, it uses a

rendering library called Object�Oriented

Graphics Rendering Engine (OGRE), which

makes it possible to visualize dynamic 3D

objects and scenes. Thirdly, the

communication library enables

communication amongst various elements

of Gazebo. Besides these three core

libraries, Gazebo offers plugin support that

allows the users to communicate with

these libraries directly. Finally, Gazebo is a

standalone simulator. However, it is

typically used in conjunction with ROS [33],

[34]. Gazebo supports modelling of almost

all kinds of robots. [35] presents a complex

scenario that shows the advanced

modeling capabilities of Gazebo which

models the Prius Hybrid model of a car

driving in the simulated M-city.

D. LGSVL

 LG Electronics America R&D Center

(LGSVL) [36] is a multi-robot AV simulator.

It proposes an out-of-the-box solution for

the AV algorithms to test the autonomous

vehicle algorithms. It is integrated to some

of the platforms that make it easy to test

and validate the entire system. The

simulator is open source and is developed

based on the Unity game engine [37].

LGSVL provides different bridges for

message passing between the AD stack and

the simulator backbone. The simulator has

different components. The user AD stack

that provides the development, test, and

verification platform to the AV developers.

The simulator supports ROS1, ROS2, and

Cyber RT messages. This helps to connect

the simulator to the Auto-ware [38] and

Baidu Apollo [39] which are the most

popular AD stacks.

CHALLENGES-

The automotive simulators have come a

long way. Although simulation has now

become a cornerstone in the development

of self-driving cars, common standards to

evaluate simulation results are lacking. For

example, the Annual Mileage Report

submitted to the California Department of

Motor Vehicle by the key players such as

Waymo, Cruise, and Tesla does not include

the sophistication and diversity of the miles

collected through simulation [40]. It would

be more beneficial to have simulation

standards that could help make a more

informative comparison between various

research efforts. Further, we are not aware

of any simulators that are currently capable

of testing the concept of connected

vehicles, where vehicles communicate with

each other and with the infrastructure.

However, there are test beds available such

as the ones mentioned in the report [41]

from the US Department of Transportation.

In addition, current simulators, for instance

CARLA and LGSVL, are on-going projects

and add the most recent technologies.

Therefore, the user may encounter with

undocumented errors or bugs. Therefore,

the community support is quite important

which can improve the quality of open

source simulators and ADAS tests .

RELATED WORK-

 There are many other simulators available

that are not explicitly reviewed in this

paper. For example, Road View is a traffic

scene modelling simulator built using

image sequences and the road Global

Information System (GIS) data [42]. [43]

provides an in-depth review of CARLA

simulator and how it can be used to test

autonomous driving algorithms. Similarly,

[5], [44], and [7] provide review of various

other automotive and robotic simulators.

[45] discusses a distributed simulation

platform for testing.

CONCLUSION REMARKS

 In this paper, we compare

MATLAB/Simulink, CarSim, PreScan,

Gazebo, CARLA and LGSVL simulators for

testing self-driving cars. The focus is on

how well they are at simulating and testing

perception, mapping and localization, path

planning and vehicle control for self-driving

cars. Our analysis yields five key

observations that are discussed in Section

V. We also identify key requirements that

state-ofthe-art simulators must have to

yield reliable results. Finally, several

challenges still remain with the simulation

strategies such as the lack of common

standards as mentioned in Section VI. In

conclusion, simulation will continue to help

design self-driving vehicles in a safe, cost

effective, and timely fashion, provided the

simulations represent the reality.

REFERENCES

[1] “Off road, but not offline: How

simulation helps advance our waymo

driver,” http://bit.ly/WaymoBlog, 2020,

Online; accessed: 01-December-2020.

 [2] W. Huang, Kunfeng Wang, Yisheng Lv,

and FengHua Zhu, “Autonomous vehicles

testing methods review,” in 2016 IEEE 19th

International Conference on Intelligent

Transportation Systems (ITSC), 2016, pp.

163–168.

 [3] E. Yurtsever, J. Lambert, A. Carballo,

and K. Takeda, “A sur�vey of autonomous

driving: Common practices and emerging

technologies,” IEEE Access, vol. 8, pp. 58

443–58 469, 2020.

[4] “Waymo is using AI to simulate

autonomous vehicle camera data,”

http://bit.ly/WaymoAI, 2020, Online;

accessed: 01- December-2020. [5] J.

Fadaie, “The state of modeling,

simulation, and data utilization within

industry: An autonomous vehicles

perspective,” arXiv preprint

arXiv:1910.06075, 2019.

[6] “The challenges of developing

autonomous vehicles during a pandemic,”

http://bit.ly/ChallengesAD, 2020, Online;

ac�cessed: 01-December-2020.

[7] M. C. Figueiredo, R. J. Rossetti, R. A.

Braga, and L. P. Reis, “An approach to

simulate autonomous vehicles in urban

traffic scenarios,” in 2009 12th

International IEEE Conference on

Intelligent Transportation Systems. IEEE,

2009, pp. 1–6.

[8] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q.

Zhang, and W. Shi, “Computing systems

for autonomous driving: State-of-the-art

and challenges,” IEEE Internet of Things

Journal, November, 2020.

[9] V. Antinyan, “Revealing the complexity

of automotive software,” in Proceedings of

the 28th ACM Joint Meeting on European

Software Engineering Conference and

Symposium on the Foundations of

Software Engineering, 2020, pp. 1525–

1528.

[10] M. Hirz and B. Walzel, “Sensor and

object recognition technologies for self-

driving cars,” Computer-aided design and

applications, vol. 15, no. 4, pp. 501–508,

2018.

[11] S. Standard, “J3016: Taxonomy and

definitions for terms related to on-road

motor vehicle automated driving systems,

2014, usa.” [12] H. Schoner, “The role of

simulation in development and ¨ testing of

autonomous vehicles,” in Driving

Simulation Con�ference, Stuttgart, 2017.

[13] R. Fan, J. Jiao, H. Ye, Y. Yu, I. Pitas, and

M. Liu, “Key ingre�dients of self-driving

cars,” arXiv preprint arXiv:1906.02939,

2019.

[14] J. Van Brummelen, M. O’Brien, D.

Gruyer, and H. Najjaran, “Autonomous

vehicle perception: The technology of

today and tomorrow,” Transportation

research part C: emerging technologies,

vol. 89, pp. 384–406, 2018.

[15] J. Kocic, N. Jovi ´ ciˇ c, and V.

Drndarevi ´ c, “Sensors and sensor ´ fusion

in autonomous vehicles,” in 2018 26th

Telecommuni�cations Forum (TELFOR).

IEEE, 2018, pp. 420–425.

 [16] D. Gonzalez, J. P ´ erez, V.Milan ´ es,

and F.Nashashibi, “A re- ´ view of motion

planning techniques for automated

vehicles,” IEEE Transactions on Intelligent

Transportation Systems, vol. 17, no. 4, pp.

1135–1145, 2016. [17] Y. K. Hwang and N.

Ahuja, “Gross motion planning—a survey,”

ACM Comput. Surveys, vol. 24, no. 3, pp.

219–291, 1992.

[18] J. Martinez and C. Canudas-De-Wit, “A

safe longitudinal control for adaptive

cruise control and stop-and-go scenarios,”

IEEE Transactions on Control Systems

Technology, vol. 15, no. 2, pp. 246–258,

2007.

[19] S. Li, K. Li, R.Rajamani, and J.Wang,

“Model predic�tive multi-objective

vehicular adaptive cruise control,” IEEE

Transactions on Control Systems

Technology, vol. 19, no. 3, pp. 556–566,

2011.

[20] F. Camara, N. Bellotto, S. Cosar, F.

Weber, D. Nathanael, M. Althoff, J. Wu, J.

Ruenz, A. Dietrich, G. Markkula et al.,

“Pedestrian models for autonomous

driving part ii: high-level models of

human behavior,” IEEE Transactions on

Intelligent Transportation Systems, 2020.

[21] S. Lafuente-Arroyo, P. Gil-Jimenez, R.

Maldonado-Bascon, F. Lopez-Ferreras, and

S. Maldonado-Bascon, “Traffic sign ´ shape

classification evaluation i: Svm using

distance to borders,” in IEEE Proceedings.

Intelligent Vehicles Symposium, 2005.

IEEE, 2005, pp. 557–562.

 [22] Y. Liu, M. Tight, Q. Sun, and R. Kang,

“A systematic review: Road infrastructure

requirement for connected and

autonomous vehicles (cavs),” in Journal of

Physics: Conference Series, vol. 1187, no.

4. IOP Publishing, 2019, p. 042073.

[23] “HERE HD live map,”

http://bit.ly/HERE HDMaps, Online;

accessed: 30-December-2020.

[24] “Asam opendrive®,”

http://bit.ly/ASAMOpenDrive, Online;

accessed: 30-December-2020.

[25] “Automated driving toolbox,”

http://bit.ly/ToolboxMATLAB, 2020,

Online; accessed: 013-December-2020.

[26] “Automated driving toolbox ground

truth labeling,”

http://bit.ly/GroundTruthLabeling, Online;

accessed: 30- December-2020.

[27] “Automated driving toolbox reference

applications,”

http://bit.ly/AutomatedDrivingToolbox,

Online; accessed: 30-December-2020.

[28] “Carsim adas: Moving objects and

sensors,” http://bit.ly/CarSimMO, 2020,

Online; accessed: 013- December-2020.

[29] A. Dosovitskiy, G. Ros, F. Codevilla, A.

Lopez, and V. Koltun, “Carla: An open

urban driving simulator,” arXiv preprint

arXiv:1711.03938, 2017.

[30] Unreal. Unreal engine technologies.

[Online]. Available:

https://www.unrealengine.com/en-US/

[31] N. Koenig and A. Howard, “Design

and use paradigms for gazebo, an open-

source multi-robot simulator,” in 2004

IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS)(IEEE

Cat. No. 04CH37566), vol. 3. IEEE, 2004,

pp. 2149–2154.

[32] “SDF,” http://sdformat.org/, Online;

accessed: 05-December�2020.

[33] K. Takaya, T. Asai, V. Kroumov, and F.

Smarandache, “Simulation environment

for mobile robots testing using ros and

gazebo,” in 2016 20th International

Conference on System Theory, Control and

Computing (ICSTCC). IEEE, 2016, pp. 96–

101.

[34] W. Yao, W. Dai, J. Xiao, H. Lu, and Z.

Zheng, “A simulation system based on ros

and gazebo for robocup middle size

league,” in 2015 IEEE international

conference on robotics and biomimetics

(ROBIO). IEEE, 2015, pp. 54–59.

[35] “Demo of prius in ros/gazebo,”

https://github.com/osrf/car demo, 2019,

Online; accessed: 01-December-2020.

[36] G. Rong, B. H. Shin, H. Tabatabaee, Q.

Lu, S. Lemke, M. Mozeiko, E. Boise, G.

Uhm, M. Gerow, S. Mehta ˇ et al., “Lgsvl

simulator: A high fidelity simulator for

autonomous driving,” arXiv preprint

arXiv:2005.03778, 2020.

https://www.unrealengine.com/en-US/

[37] Unity. Unity technologies. [Online].

Available: https://unity.com/

[38] “AUTOWARE,”

https://www.autoware.org, Online;

accessed: 01-December-2020.

[39] “BAIDU APOLLO,”

http://bit.ly/ApolloAuto, Online;

ac�cessed: 013-December-2020.

[40] “New autonomous mileage reports

are out, but is the data meaningful?”

http://bit.ly/AMRData, 2019, Online;

accessed: 013-December-2020.

[41] U. DOT, “Intelligent transportation

systems-joint program.”

[42] C. Zhang, Y. Liu, D. Zhao, and Y. Su,

“Roadview: A traffic scene simulator for

autonomous vehicle simulation testing,” in

17th International IEEE Conference on

Intelligent Transportation Systems (ITSC).

IEEE, 2014, pp. 1160–1165.

[43] R. B. Banerjee, “Development of a

simulation-based platform for

autonomous vehicle algorithm validation,”

Ph.D. dissertation, Massachusetts Institute

of Technology, 2019.

[44] Q. Chao, H. Bi, W. Li, T. Mao, Z. Wang,

M. C. Lin, and Z. Deng, “A survey on visual

traffic simulation: Models, evaluations,

and applications in autonomous driving,”

in Computer Graphics Forum, vol. 39, no.

1. Wiley Online Library, 2020, pp. 287–

308.

 [45] J. Tang, S. Liu, C. Wang, and C. Liu,

“Distributed simulation platform for

autonomous driving,” in International

Conference on Internet of Vehicles.

Springer, 2017, pp. 190–200

https://unity.com/

