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Abstract— 

Rigorous and comprehensive testing plays 

a key role in training self-driving cars to 

handle a variety of situations that they are 

expected to see on public roads. The 

physical testing on public roads is unsafe, 

costly, and not always reproducible. This is 

where testing in simulation helps fill the 

gap. However, the problem with simulation 

testing is that it is only as good as the 

simulator used for testing and how 

representative the simulated scenarios are 

of the real environment. In this paper, we 

identify key requirements that a good 

simulator must have. Further, we provide a 

comparison of commonly used simulators. 

Our analysis shows that CARLA and LGSVL 

simulators are the current state-of-the-art 

simulators for end to end testing of self-

driving cars for the reasons mentioned in 

this paper. Finally, we present current 

challenges that simulation testing 

continues to face as we march towards 

building fully autonomous cars.          

 

 

INTRODUCTION-                             

According to the annual Autonomous 

Mileage Report published by the California 

Department of Motor Vehicles, Waymo has 

logged billions of miles in testing so far. As 

of 2019, the company’s self-driving cars 

have driven 20 million miles on public 

roads in 25 cities and additionally 15 billion 

miles through computer simulations [1]. 

While the number of miles driven is 

important, it is the sophistication and 

diversity of miles accumulated that 

determines and shapes the maturity of the 

product [2]. Additionally, the testing 

through simulation plays a key role in 

supplementing and accelerating the real 

world testing [1]. It allows one to test 

scenarios that are otherwise highly 

regulated on public roads because of 

various safety concerns [3]. It is 

reproducible, scalable and reduces the 

development cost. There are many 

simulators available for testing the 

software for self-driving cars, which have 

their own pros and cons.  



                                                                                                       

however, there are many open source 

simulators available as well. In this paper, 

we compare MATLAB/Simulink, CarSim, 

Pre-Scan, Gazebo, CARLA and LGSVL 

simulators with the objective of studying 

their performance in testing new 

functionalities such as perception, 

localization, vehicle control, and creation 

of dynamic 3D virtual environments.  

 

MOTIVATION AND BACKGROUND- 

 The complexity of automotive software 

and hardware is continuing to grow as we 

progress towards building self-driving cars. 

In addition to tradition testing such as 

proper vehicle dynamics, crash-

worthiness, reliability, and functional 

safety, there is a need to test self-driving 

related algorithms and software, such as 

deep learning and energy efficiency [8]. As 

an example, a Volvo vehicle built in 2020 

has about 100 million lines of code 

according to their data [9]. This includes 

code for transmission control, cruise 

control, collision mitigation, connectivity, 

engine control and many other basic and 

advanced functionalities that come with 

the cars bought today. Similarly, the cars 

now have more advanced hardware, which 

includes a plethora of sensors that ensure  

vehicles are able to perceive the world 

around them just like humans do [10]. 

Therefore, the complexity of the modern 

age vehicle is the result of both more 

advanced hardware and software needed 

to process the information retrieved from 

the environment and for decision making 

capability. These simulators have evolved 

from merely simulating vehicle dynamics 

to also simulating more complex 

functionalities. Table I shows various levels 

of automation per the Society of 

Automotive Engineers (SAE) definitions 

[11], along with the evolving list of 

requirements for testing that are inherent 

in our path to full automation. It is 

important to note that Table I focuses on 

requirements that are essentially new to 

testing driver assisted features and 

autonomous behaviour [12]. This includes 

things such as perception, localization and 

mapping, control algorithms and path 

planning. 

 

 

 



 

 

Table I TESTING REQUIREMENTS TO 

MEET S.A.E AUTOMATION LEVELS 

  

 

  

 

    METHODOLOGY- 

The emphasis of this paper is on testing 

the new and highly automated 

functionality that is unique to self-

driving cars. This section identifies a set 

of criteria that can serve as a metric to 

identify which simulators are a best fit 

for the task at hand. The approach we 

take to compile requirements for a 

simulator is as below. Firstly, we focus 

on the requirements driven by the 

functional architecture of self-driving 

cars [13] (Requirements 1-4). Secondly, 

we focus on the requirements that must 

be met in order to support the 

infrastructure to drive the simulated car 

in (Requirements 5-7). Thirdly, we 

define the requirements that allow the 

use of simulators for secondary tasks 

such as data collection for further use 

(Requirement 8). Finally, we list generic 

requirements desired from any good 

automotive simulator (Requirement 9).  

1) Perception: 

 Levels of Driving 
Automation 

Testing Requirements 

    

Levels 

    

Description 

 

Level 0 No Automation: 
Features are limited to, 
warnings & 
momentary assistance. 
Examples: LDW, Blind 
Spot Warning 

Simulation of: Traffic flow, 
multiple road terrain type, radar 
and camera sensors. 

Level 1 Assisted: Features 
provide steering OR 
brake/acceleration 
control. Examples: 
Lane Centering OR ACC 

All of the above plus Simulation 
of: vehicle dynamics, ultrasonic 
sensors 

Level 2 Partial Automation: 
Features provide 
steering AND 
brake/acceleration 
control. Examples: 
Lane Centering AND 
ACC at the same time 

All of the above plus Simulation 
of: driver monitoring system. 
Human-machine interface 

Level 3 Conditional 
Automation: Features 
can drive the vehicle 
when all of its 
conditions are met. 
Examples: Traffic Jam 
Assist 

All of the above plus Simulation 
of: Traffic infrastructure, 
dynamic objects 

Level 4 High Automation: 
Features can drive the 
vehicle under limited 
conditions. No driver 
intervention. 
Examples: Local 
Driverless taxis 

All of the above plus Simulation 
of: different weather 
conditions, lidar, camera, radar 
sensors, mapping and 
localization 

Level 5 Full Automation: 
Features can drive the 
vehicle in all conditions 
and everywhere. 
Examples: Full 
autonomous vehicles 
everywhere 

All of the above plus 
compliance with all the road, 
rules, V2X communication 



 One of the vital components of self-driving 

cars is its ability to see and make sense 

(perceive) the world around itself. This is 

called perception. The vehicle perception is 

further composed of      hardware, that is 

available in the form of a wide variety of 

automotive grade sensors and software, 

that interprets data collected by various 

sensors to make it meaningful for further 

decisions. The sensors that are most 

prevalent in research and commercial self-

driving cars today include camera, LiDAR, 

ultrasonic sensor, radar, Global Positioning 

System (GPS), Inertial Measurement Unit 

(IMU) [14]. In order to test a perception 

system, the simulator must have realistic 

sensor models and/or be able to support 

an input data stream from the real sensors 

for further utilization. Once the data from 

these sensors is available within the 

simulation environment, researchers can 

then test their perception methods such as 

sensor fusion [15]. The simulated 

environment can also be used to guide 

sensor placement in a real vehicle for 

optimal perception. 

 2) The multi-view geometry: 

 The Simultaneous Localization and 

Mapping (SLAM) is one of components of 

Autonomous Driving (AD) systems that 

focuses on constructing the map of 

unknown environments and tracking the 

location of the AD system inside the 

updated map. In order to support SLAM 

applications, the simulator should provide 

the intrinsic and extrinsic features of 

cameras. In other words, it should provide 

the camera calibration. According to this 

information, the SLAM algorithm can run 

the multi-view geometry and estimate the 

camera pose and localize the AD system 

inside the global map.  

3) Path Planning: 

 The problem of path planning revolves 

around planning a path for a mobile agent 

so that it is able to move around 

autonomously without collision with its 

surroundings. The path planning problem 

for autonomous vehicles piggy backs on 

the research that has already been done in 

the field of mobile robots in the last 

decade. This problem is sub-divided into 

local and global planning [16] where the 

global planner is typically generated based 

on a static map of the environment and the 

local planner is created incrementally 

based on the immediate surroundings of 

the mobile agent. In order to create these 

planners, various planning algorithms play 

a key role [17]. To implement such 

intelligent path planning algorithms like A*, 

D* and RRT algorithms [16], the simulator 



should at least have a built-in function to 

build maps or have interfaces for importing 

maps from outside. In addition, the 

simulator should have interfaces for 

programming customized algorithms.  

4) Vehicle Control: 

 The final step after a collision free path is 

planned is to execute the predicted 

trajectory as closely as possible. This is 

accomplished via the control inputs such as 

throttle, brake and steering [13] that are 

monitored by closed loop control 

algorithms [18]. The Proportional–

integral–derivative (PID) control algorithm 

and Model Predictive Control (MPC) 

algorithm are commonly seen in research 

and industries [19]. To implement such 

intelligent control algorithms, the 

simulator should be capable of building 

vehicle dynamic models and programming 

the algorithms in mathematical forms. 

 5) 3D Virtual Environment: 

 In order to test various functional 

elements of a car mentioned in the above 

requirements, it is equally important to 

have a realistic 3D virtual environment. The 

perception system relies on photogenic 

view of the scene to sense the virtual 

world. This 3D virtual environment must 

include both static objects such as 

buildings, trees, etc. and dynamic objects 

such as other vehicles, pedestrians, 

animals, and bicyclists. Furthermore, the 

dynamic objects must behave realistically 

to reflect the true behaviour of these 

dynamic entities in an environment. In 

order to achieve 3D virtual environment 

creation, simulators can either rely on 

game engines or use the High Definition 

(HD) map of a real environment and render 

it in a simulation [5]. Similarly, in order to 

simulate dynamic objects, the vehicle 

simulators can leverage other domains 

such as pedestrian models [20] to simulate 

realistic pedestrians movement in the 

scene. Furthermore, the 3D virtual 

environment must support different 

terrains and weather conditions that are 

typical in a real environment. It is 

important to note that the level of detail in 

a 3D virtual environment depends on the 

simulation approach taken. Some 

companies such as Uber and Waymo do 

not use highly detailed simulators [5]. 

Therefore, they do not use simulators to 

test perception models. However, if the 

goal is to test perception models in 

simulation, then the level of detail is very 

important.  

6) Traffic Infrastructure: 



 In addition to the requirements for a 3D 

virtual environment mentioned above, it is 

also important for a simulation to have the 

support for various traffic aids such as 

traffic lights, roadway signage, etc. [21]. 

This is because these  aids help regulate 

traffic for the safety of all road users. It is 

projected that the traffic infrastructure will 

evolve to support connected vehicles in the 

near future [22]. However, until the 

connected vehicles become a reality, self-

driving cars are expected to comply with 

the same traffic rules as the human drivers.  

7) Traffic Scenarios Simulation: 

 The ability to create various traffic 

scenarios is one of main points that 

identifies whether a simulator is valuable 

or not. This allows the researchers to not 

only re-create/play back a real world 

scenario but also allows them to test 

various ”what-if” scenarios that cannot be 

tested in a real environment because of 

safety concerns. This criteria considers not 

only the variety of traffic agents but also 

the mechanisms that the simulator 

provides to generate these agents. 

Different types of dynamic objects consist 

of humans, bicycles, motorcycles, animals, 

and vehicles such as buses, trucks, 

ambulances and motorcycles. In order to 

generate scenes close to real world scenes, 

it is important that simulator supports 

significant number of these dynamic 

agents. In addition, simulator should 

provide a flexible API that allows users to 

manage different aspects of simulation 

which consists of generating traffic agents 

and more complex scenarios such as 

pedestrian behaviours, vehicles crashes, 

weather conditions, sensor types, stops 

signs, and etc.  

8) 2D/3D Ground Truth:  

In order to provide the training data to the 

AI models, the simulator should provide 

object labels and bounding boxes of the 

objects appearing in the scene. The sensor 

outputs each video frame where objects 

are encapsulated in a box.  

9) Non-functional Requirements: 

 The qualitative analysis of open source 

simulators includes different aspects that 

can help AD developers to estimate the 

learning time and the duration required for 

simulating different scenarios and 

experiments.  

A) Well maintained/Stability:  

In order to use simulator for different 

experiments and testing, the simulator 

should have comprehensive 

documentation that makes it easy to use. 



In case that maintenance teams improve 

the simulator, if the backward compatibility 

is not considered, the documentation 

should provide the precise mapping 

between the deprecated APIs and newly 

added APIs.  

B)Flexibility/Modular: 

 Open source simulators should follow a 

division of concept principle that can help 

AD developers to leverage and extend 

different scenarios in shorter time. In 

addition, the simulator can provide a 

flexible API that enables defining 

customized versions of sensors, generating 

new environments and adding different 

agents.  

C)Portability: 

 If the simulator is able to run on different 

types of operating systems, it enables users 

to leverage the simulator more easily. Most 

users may not have access to the different 

types of operating systems at the same 

time, therefore the simulator’s portability 

can save time for the users. Scalability via a 

server multi-client architecture: Scalable 

architecture such as client-server 

architecture enables multiple clients to run 

on different nodes to control different 

agents at the same time. This is helpful 

specifically for simulating the congestion 

and/or complex scenes. 

D)Open-Source: 

It is preferred that a simulator be open 

source. The open source simulators enable 

more collaboration, collective progress and 

allows to incorporate learning from peers 

in the same domain. 

 

 

 

SIMULATORS  

This section provides a brief description of 

simulators that were analyzed and 

compared.  

A. MATLAB/Simulink 

MATLAB/Simulink published Automated 

Driving Tool�box™, which provides various 

tools that facilitate the design, simulation 

and testing of Advanced Driver Assisted 

Systems (ADAS) and automated driving 

systems. It allows users to test core 

functionalities such as perception, path 

planning, and vehicle control. One of its key 

features is that HERE HD live map data [23] 

and OpenDRIVE® road networks [24] can 

be imported into MATLAB and these can be 

used for various design and testing 



purposes. Further, the users can build 

photo-realistic 3D scenarios and model 

various sensors. It is also equipped with a 

built-in visualizer that allows to view live 

sensor detection and tracks [25]. In 

addition to serving as a simulation and 

design environment, it also enables users 

to automate the labeling of objects 

through the Ground Truth Label app [26]. 

This data can be further used for training 

purposes or to evaluate sensor 

performance. MATLAB provides several 

examples on how to simulate various ADAS 

features including Adaptive Cruise Control 

(ACC), Automatic Emergency Braking 

(AEB), Automatic Parking Asisst, etc [27]. 

Last but not the least, the toolbox supports 

Hardware In the Loop (HIL) testing and 

C/C++ code generation, which enables 

faster prototyping. 

B. CarSim 

CarSim is a vehicle simulator commonly 

used by industry and academia. The 

newest version of CarSim supports 

mov�ing objects and sensors that benefit 

simulations involving ADAS and 

Autonomous Vehicles (AVs) [28]. In terms 

of traffic and target objects, in addition to 

simulated vehicle, there are up to 200 

objects with independent locations and 

motions. These objects include static 

objects such as trees and buildings and 

dynamic objects such as pedestrians, 

vehicles, animals, and other objects of 

interest for ADAS scenarios.  

C. Gazebo 

 Gazebo is an open source, scalable, 

flexible and multi�robot 3D simulator [31]. 

It is supported on multiple operating 

systems, including Linux and Windows. It 

supports the recreation of both indoor and 

outdoor 3D environments. Gazebo relies 

on three main libraries, which include, 

physics, rendering, and a communication 

library. Firstly, the physics library allows the 

simulated objects to behave as realistically 

as possible to their real counterparts by 

letting the user define their physical 

properties such as mass, friction 

coefficient, velocity, inertia, etc. Gazebo 

uses Open Dynamic Engine (ODE) as its 

default physics engine but it also supports 

others such as Bullet, Sim-body and 

Dynamic Open Source Physics Engine 

(DART). Secondly, for visualization, it uses a 

rendering library called Object�Oriented 

Graphics Rendering Engine (OGRE), which 

makes it possible to visualize dynamic 3D 

objects and scenes. Thirdly, the 

communication library enables 

communication amongst various elements 

of Gazebo. Besides these three core 



libraries, Gazebo offers plugin support that 

allows the users to communicate with 

these libraries directly. Finally, Gazebo is a 

standalone simulator. However, it is 

typically used in conjunction with ROS [33], 

[34]. Gazebo supports modelling of almost 

all kinds of robots. [35] presents a complex 

scenario that shows the advanced 

modeling capabilities of Gazebo which 

models the Prius Hybrid model of a car 

driving in the simulated M-city.          

D. LGSVL 

 LG Electronics America R&D Center 

(LGSVL) [36] is a multi-robot AV simulator. 

It proposes an out-of-the-box solution for 

the AV algorithms to test the autonomous 

vehicle algorithms. It is integrated to some 

of the platforms that make it easy to test 

and validate the entire system. The 

simulator is open source and is developed 

based on the Unity game engine [37]. 

LGSVL provides different bridges for 

message passing between the AD stack and 

the simulator backbone. The simulator has 

different components. The user AD stack 

that provides the development, test, and 

verification platform to the AV developers. 

The simulator supports ROS1, ROS2, and 

Cyber RT messages. This helps to connect 

the simulator to the Auto-ware [38] and 

Baidu Apollo [39] which are the most 

popular AD stacks.       

 

CHALLENGES-  

The automotive simulators have come a 

long way. Although simulation has now 

become a cornerstone in the development 

of self-driving cars, common standards to 

evaluate simulation results are lacking. For 

example, the Annual Mileage Report 

submitted to the California Department of 

Motor Vehicle by the key players such as 

Waymo, Cruise, and Tesla does not include 

the sophistication and diversity of the miles 

collected through simulation [40]. It would 

be more beneficial to have simulation 

standards that could help make a more 

informative comparison between various 

research efforts. Further, we are not aware 

of any simulators that are currently capable 

of testing the concept of connected 

vehicles, where vehicles communicate with 

each other and with the infrastructure. 

However, there are test beds available such 

as the ones mentioned in the report [41] 

from the US Department of Transportation. 

In addition, current simulators, for instance 

CARLA and LGSVL, are on-going projects 

and add the most recent technologies. 

Therefore, the user may encounter with 



undocumented errors or bugs. Therefore, 

the community support is quite important 

which can improve the quality of open 

source simulators and ADAS tests .     

 

 

  

RELATED WORK- 

 There are many other simulators available 

that are not explicitly reviewed in this 

paper. For example, Road View is a traffic 

scene modelling simulator built using 

image sequences and the road Global 

Information System (GIS) data [42]. [43] 

provides an in-depth review of CARLA 

simulator and how it can be used to test 

autonomous driving algorithms. Similarly, 

[5], [44], and [7] provide review of various 

other automotive and robotic simulators. 

[45] discusses a distributed simulation 

platform for testing. 

 

 

 

 

 

CONCLUSION REMARKS 

 In this paper, we compare 

MATLAB/Simulink, CarSim, PreScan, 

Gazebo, CARLA and LGSVL simulators for 

testing self-driving cars. The focus is on 

how well they are at simulating and testing 

perception, mapping and localization, path 

planning and vehicle control for self-driving 

cars. Our analysis yields five key 

observations that are discussed in Section 

V. We also identify key requirements that 

state-ofthe-art simulators must have to 

yield reliable results. Finally, several 

challenges still remain with the simulation 

strategies such as the lack of common 

standards as mentioned in Section VI. In 

conclusion, simulation will continue to help 

design self-driving vehicles in a safe, cost 

effective, and timely fashion, provided the 

simulations represent the reality.                                        
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