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Abstract—

Rigorous and comprehensive testing plays
a key role in training self-driving cars to
handle a variety of situations that they are
expected to see on public roads. The
physical testing on public roads is unsafe,
costly, and not always reproducible. This is
where testing in simulation helps fill the
gap. However, the problem with simulation
testing is that it is only as good as the
simulator used for testing and how
representative the simulated scenarios are
of the real environment. In this paper, we
identify key requirements that a good
simulator must have. Further, we provide a
comparison of commonly used simulators.
Our analysis shows that CARLA and LGSVL
simulators are the current state-of-the-art
simulators for end to end testing of self-
driving cars for the reasons mentioned in
this paper. Finally, we present current
challenges that simulation testing
continues to face as we march towards

building fully autonomous cars.

INTRODUCTION-

According to the annual Autonomous
Mileage Report published by the California
Department of Motor Vehicles, Waymo has
logged billions of miles in testing so far. As
of 2019, the company’s self-driving cars
have driven 20 million miles on public
roads in 25 cities and additionally 15 billion
miles through computer simulations [1].
While the number of miles driven is
important, it is the sophistication and
diversity of miles accumulated that
determines and shapes the maturity of the
product [2]. Additionally, the testing
through simulation plays a key role in
supplementing and accelerating the real
world testing [1]. It allows one to test
scenarios that are otherwise highly
regulated on public roads because of
various safety concerns [3]. It is
reproducible, scalable and reduces the
development cost. There are many
simulators available for testing the
software for self-driving cars, which have

their own pros and cons.



however, there are many open source
simulators available as well. In this paper,
we compare MATLAB/Simulink, CarSim,
Pre-Scan, Gazebo, CARLA and LGSVL
simulators with the objective of studying
their performance in testing new
functionalities such as  perception,
localization, vehicle control, and creation

of dynamic 3D virtual environments.

MOTIVATION AND BACKGROUND-

The complexity of automotive software
and hardware is continuing to grow as we
progress towards building self-driving cars.
In addition to tradition testing such as
proper vehicle dynamics, crash-
worthiness, reliability, and functional
safety, there is a need to test self-driving
related algorithms and software, such as
deep learning and energy efficiency [8]. As
an example, a Volvo vehicle built in 2020
has about 100 million lines of code
according to their data [9]. This includes
code for transmission control, cruise
control, collision mitigation, connectivity,
engine control and many other basic and
advanced functionalities that come with

the cars bought today. Similarly, the cars

now have more advanced hardware, which

includes a plethora of sensors that ensure

vehicles are able to perceive the world
around them just like humans do [10].
Therefore, the complexity of the modern
age vehicle is the result of both more
advanced hardware and software needed
to process the information retrieved from
the environment and for decision making
capability. These simulators have evolved
from merely simulating vehicle dynamics
to also simulating more complex
functionalities. Table | shows various levels
of automation per the Society of
Automotive Engineers (SAE) definitions
[11], along with the evolving list of
requirements for testing that are inherent
in our path to full automation. It is
important to note that Table | focuses on
requirements that are essentially new to
testing driver assisted features and
autonomous behaviour [12]. This includes
things such as perception, localization and
mapping, control algorithms and path

planning.



Table | TESTING REQUIREMENTS TO

MEET S.A.E AUTOMATION LEVELS

Levels of Driving

Testing Requirements

Automation

Levels | Description

Level O | No Automation: Simulation of: Traffic flow,
Features are limited to, | multiple road terrain type, radar
warnings & and camera sensors.
momentary assistance.
Examples: LDW, Blind
Spot Warning

Level 1 | Assisted: Features All of the above plus Simulation
provide steering OR of: vehicle dynamics, ultrasonic
brake/acceleration sensors
control. Examples:
Lane Centering OR ACC

Level 2 | Partial Automation: All of the above plus Simulation
Features provide of: driver monitoring system.
steering AND Human-machine interface
brake/acceleration
control. Examples:
Lane Centering AND
ACC at the same time

Level 3 | Conditional All of the above plus Simulation
Automation: Features of: Traffic infrastructure,
can drive the vehicle dynamic objects
when all of its
conditions are met.
Examples: Traffic Jam
Assist

Level 4 | High Automation: All of the above plus Simulation
Features can drive the | of: different weather
vehicle under limited conditions, lidar, camera, radar
conditions. No driver sensors, mapping and
intervention. localization
Examples: Local
Driverless taxis

Level 5 | Full Automation: All of the above plus

Features can drive the
vehicle in all conditions
and everywhere.
Examples: Full
autonomous vehicles

everywhere

compliance with all the road,
rules, V2X communication

METHODOLOGY-

The emphasis of this paper is on testing

the new and highly automated
functionality that is unique to self-
driving cars. This section identifies a set
of criteria that can serve as a metric to
identify which simulators are a best fit
for the task at hand. The approach we
take to compile requirements for a
simulator is as below. Firstly, we focus
on the requirements driven by the
functional architecture of self-driving
cars [13] (Requirements 1-4). Secondly,
we focus on the requirements that must
be met in order to support the
infrastructure to drive the simulated car
in (Requirements 5-7). Thirdly, we
define the requirements that allow the
use of simulators for secondary tasks
such as data collection for further use
(Requirement 8). Finally, we list generic
requirements desired from any good

automotive simulator (Requirement 9).

1) Perception:



One of the vital components of self-driving
cars is its ability to see and make sense
(perceive) the world around itself. This is
called perception. The vehicle perception is
further composed of hardware, that is
available in the form of a wide variety of
automotive grade sensors and software,
that interprets data collected by various
sensors to make it meaningful for further
decisions. The sensors that are most
prevalent in research and commercial self-
driving cars today include camera, LiDAR,
ultrasonic sensor, radar, Global Positioning
System (GPS), Inertial Measurement Unit
(IMU) [14]. In order to test a perception
system, the simulator must have realistic
sensor models and/or be able to support
an input data stream from the real sensors
for further utilization. Once the data from
these sensors is available within the
simulation environment, researchers can
then test their perception methods such as
sensor fusion [15]. The simulated
environment can also be used to guide
sensor placement in a real vehicle for

optimal perception.
2) The multi-view geometry:

The Simultaneous Localization and
Mapping (SLAM) is one of components of
Autonomous Driving (AD) systems that

focuses on constructing the map of

unknown environments and tracking the
location of the AD system inside the
updated map. In order to support SLAM
applications, the simulator should provide
the intrinsic and extrinsic features of
cameras. In other words, it should provide
the camera calibration. According to this
information, the SLAM algorithm can run
the multi-view geometry and estimate the
camera pose and localize the AD system

inside the global map.
3) Path Planning:

The problem of path planning revolves
around planning a path for a mobile agent
so that it is able to move around
autonomously without collision with its
surroundings. The path planning problem
for autonomous vehicles piggy backs on
the research that has already been done in
the field of mobile robots in the last
decade. This problem is sub-divided into
local and global planning [16] where the
global planner is typically generated based
on a static map of the environment and the
local planner is created incrementally
based on the immediate surroundings of
the mobile agent. In order to create these
planners, various planning algorithms play
a key role [17]. To implement such
intelligent path planning algorithms like A*,

D* and RRT algorithms [16], the simulator



should at least have a built-in function to
build maps or have interfaces for importing
maps from outside. In addition, the
simulator should have interfaces for

programming customized algorithms.
4) Vehicle Control:

The final step after a collision free path is
planned is to execute the predicted
trajectory as closely as possible. This is
accomplished via the control inputs such as
throttle, brake and steering [13] that are
monitored by closed loop control
algorithms [18]. The Proportional—
integral—derivative (PID) control algorithm
and Model Predictive Control (MPC)
algorithm are commonly seen in research
and industries [19]. To implement such
intelligent  control  algorithms, the
simulator should be capable of building
vehicle dynamic models and programming

the algorithms in mathematical forms.
5) 3D Virtual Environment:

In order to test various functional
elements of a car mentioned in the above
requirements, it is equally important to
have a realistic 3D virtual environment. The
perception system relies on photogenic
view of the scene to sense the virtual
world. This 3D virtual environment must

include both static objects such as

buildings, trees, etc. and dynamic objects
such as other vehicles, pedestrians,
animals, and bicyclists. Furthermore, the
dynamic objects must behave realistically
to reflect the true behaviour of these
dynamic entities in an environment. In
order to achieve 3D virtual environment
creation, simulators can either rely on
game engines or use the High Definition
(HD) map of a real environment and render
it in a simulation [5]. Similarly, in order to
simulate dynamic objects, the vehicle
simulators can leverage other domains
such as pedestrian models [20] to simulate
realistic pedestrians movement in the
scene. Furthermore, the 3D virtual
environment must support different
terrains and weather conditions that are
typical in a real environment. It is
important to note that the level of detail in
a 3D virtual environment depends on the
simulation  approach  taken. Some
companies such as Uber and Waymo do
not use highly detailed simulators [5].
Therefore, they do not use simulators to
test perception models. However, if the
goal is to test perception models in
simulation, then the level of detail is very

important.

6) Traffic Infrastructure:



In addition to the requirements for a 3D
virtual environment mentioned above, it is
also important for a simulation to have the
support for various traffic aids such as
traffic lights, roadway signage, etc. [21].
This is because these aids help regulate
traffic for the safety of all road users. It is
projected that the traffic infrastructure will
evolve to support connected vehicles in the
near future [22]. However, until the
connected vehicles become a reality, self-
driving cars are expected to comply with

the same traffic rules as the human drivers.
7) Traffic Scenarios Simulation:

The ability to create various traffic
scenarios is one of main points that
identifies whether a simulator is valuable
or not. This allows the researchers to not
only re-create/play back a real world
scenario but also allows them to test
various "what-if” scenarios that cannot be
tested in a real environment because of
safety concerns. This criteria considers not
only the variety of traffic agents but also
the mechanisms that the simulator
provides to generate these agents.
Different types of dynamic objects consist
of humans, bicycles, motorcycles, animals,
and vehicles such as buses, trucks,
ambulances and motorcycles. In order to

generate scenes close to real world scenes,

it is important that simulator supports
significant number of these dynamic
agents. In addition, simulator should
provide a flexible API that allows users to
manage different aspects of simulation
which consists of generating traffic agents
and more complex scenarios such as
pedestrian behaviours, vehicles crashes,
weather conditions, sensor types, stops

signs, and etc.
8) 2D/3D Ground Truth:

In order to provide the training data to the
Al models, the simulator should provide
object labels and bounding boxes of the
objects appearing in the scene. The sensor
outputs each video frame where objects

are encapsulated in a box.
9) Non-functional Requirements:

The qualitative analysis of open source
simulators includes different aspects that
can help AD developers to estimate the
learning time and the duration required for
scenarios  and

simulating  different

experiments.
A) Well maintained/Stability:

In order to use simulator for different
experiments and testing, the simulator
should have comprehensive

documentation that makes it easy to use.



In case that maintenance teams improve
the simulator, if the backward compatibility
is not considered, the documentation
should provide the precise mapping
between the deprecated APIs and newly

added APIs.
B)Flexibility/Modular:

Open source simulators should follow a
division of concept principle that can help
AD developers to leverage and extend
different scenarios in shorter time. In
addition, the simulator can provide a
flexible APl that enables defining
customized versions of sensors, generating
new environments and adding different

agents.
C)Portability:

If the simulator is able to run on different
types of operating systems, it enables users
to leverage the simulator more easily. Most
users may not have access to the different
types of operating systems at the same
time, therefore the simulator’s portability
can save time for the users. Scalability via a
server multi-client architecture: Scalable
architecture  such as  client-server
architecture enables multiple clients to run

on different nodes to control different

agents at the same time. This is helpful

specifically for simulating the congestion

and/or complex scenes.
D)Open-Source:

It is preferred that a simulator be open
source. The open source simulators enable
more collaboration, collective progress and
allows to incorporate learning from peers

in the same domain.

SIMULATORS

This section provides a brief description of
simulators that were analyzed and

compared.

A. MATLAB/Simulink

MATLAB/Simulink published Automated
Driving ToolBlbox™, which provides various
tools that facilitate the design, simulation
and testing of Advanced Driver Assisted
Systems (ADAS) and automated driving
systems. It allows users to test core
functionalities such as perception, path
planning, and vehicle control. One of its key
features is that HERE HD live map data [23]
and OpenDRIVE® road networks [24] can
be imported into MATLAB and these can be

used for various design and testing



purposes. Further, the users can build
photo-realistic 3D scenarios and model
various sensors. It is also equipped with a
built-in visualizer that allows to view live
sensor detection and tracks [25]. In
addition to serving as a simulation and
design environment, it also enables users
to automate the Ilabeling of objects
through the Ground Truth Label app [26].
This data can be further used for training
purposes or to evaluate sensor
performance. MATLAB provides several
examples on how to simulate various ADAS
features including Adaptive Cruise Control
(ACC), Automatic Emergency Braking
(AEB), Automatic Parking Asisst, etc [27].
Last but not the least, the toolbox supports
Hardware In the Loop (HIL) testing and
C/C++ code generation, which enables

faster prototyping.
B. CarSim

CarSim is a vehicle simulator commonly
used by industry and academia. The
newest version of CarSim supports
movlling objects and sensors that benefit
simulations involving ADAS and
Autonomous Vehicles (AVs) [28]. In terms
of traffic and target objects, in addition to
simulated vehicle, there are up to 200

objects with independent locations and

motions. These objects include static

objects such as trees and buildings and
dynamic objects such as pedestrians,
vehicles, animals, and other objects of

interest for ADAS scenarios.

C. Gazebo

Gazebo is an open source, scalable,
flexible and multiBrobot 3D simulator [31].
It is supported on multiple operating
systems, including Linux and Windows. It
supports the recreation of both indoor and
outdoor 3D environments. Gazebo relies
on three main libraries, which include,
physics, rendering, and a communication
library. Firstly, the physics library allows the
simulated objects to behave as realistically
as possible to their real counterparts by
letting the user define their physical
properties such as mass, friction
coefficient, velocity, inertia, etc. Gazebo
uses Open Dynamic Engine (ODE) as its
default physics engine but it also supports
others such as Bullet, Sim-body and
Dynamic Open Source Physics Engine
(DART). Secondly, for visualization, it uses a
rendering library called ObjectBOriented
Graphics Rendering Engine (OGRE), which
makes it possible to visualize dynamic 3D
objects and scenes. Thirdly, the
communication library enables
communication amongst various elements

of Gazebo. Besides these three core



libraries, Gazebo offers plugin support that
allows the users to communicate with
these libraries directly. Finally, Gazebo is a
standalone simulator. However, it is
typically used in conjunction with ROS [33],
[34]. Gazebo supports modelling of almost
all kinds of robots. [35] presents a complex
scenario that shows the advanced
modeling capabilities of Gazebo which
models the Prius Hybrid model of a car

driving in the simulated M-city.
D. LGSVL

LG Electronics America R&D Center
(LGSVL) [36] is a multi-robot AV simulator.
It proposes an out-of-the-box solution for
the AV algorithms to test the autonomous
vehicle algorithms. It is integrated to some
of the platforms that make it easy to test
and validate the entire system. The
simulator is open source and is developed
based on the Unity game engine [37].
LGSVL provides different bridges for
message passing between the AD stack and
the simulator backbone. The simulator has
different components. The user AD stack
that provides the development, test, and
verification platform to the AV developers.
The simulator supports ROS1, ROS2, and
Cyber RT messages. This helps to connect

the simulator to the Auto-ware [38] and

Baidu Apollo [39] which are the most

popular AD stacks.

CHALLENGES-

The automotive simulators have come a
long way. Although simulation has now
become a cornerstone in the development
of self-driving cars, common standards to
evaluate simulation results are lacking. For
example, the Annual Mileage Report
submitted to the California Department of
Motor Vehicle by the key players such as
Waymo, Cruise, and Tesla does not include
the sophistication and diversity of the miles
collected through simulation [40]. It would
be more beneficial to have simulation
standards that could help make a more
informative comparison between various
research efforts. Further, we are not aware
of any simulators that are currently capable
of testing the concept of connected
vehicles, where vehicles communicate with
each other and with the infrastructure.
However, there are test beds available such
as the ones mentioned in the report [41]
from the US Department of Transportation.
In addition, current simulators, for instance
CARLA and LGSVL, are on-going projects
and add the most recent technologies.

Therefore, the user may encounter with



undocumented errors or bugs. Therefore,
the community support is quite important
which can improve the quality of open

source simulators and ADAS tests .

RELATED WORK-

There are many other simulators available
that are not explicitly reviewed in this
paper. For example, Road View is a traffic
scene modelling simulator built using
image sequences and the road Global
Information System (GIS) data [42]. [43]
provides an in-depth review of CARLA
simulator and how it can be used to test
autonomous driving algorithms. Similarly,
[5], [44], and [7] provide review of various
other automotive and robotic simulators.
[45] discusses a distributed simulation

platform for testing.

CONCLUSION REMARKS

In this paper, we compare

MATLAB/Simulink, CarSim, PreScan,
Gazebo, CARLA and LGSVL simulators for
testing self-driving cars. The focus is on
how well they are at simulating and testing
perception, mapping and localization, path
planning and vehicle control for self-driving
cars. Our analysis vyields five key
observations that are discussed in Section
V. We also identify key requirements that
state-ofthe-art simulators must have to
yield reliable results. Finally, several
challenges still remain with the simulation
strategies such as the lack of common
standards as mentioned in Section VI. In
conclusion, simulation will continue to help
design self-driving vehicles in a safe, cost

effective, and timely fashion, provided the

simulations represent the reality.
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