“centralized system for monitoring systems in
computer laboratory ”

1% Subrahmanya Bharadwaj B N
dept. Computer Science and Engineering (of Aff-)
Malnad College of Engineering (of Aff.)
Hassan,India
subramanyabpatna2002 @ gmail.com

3" Praveen TE
dept.Computer Science and Engineering(of Aff.)
Malnad College of Engineering(of Aff.)
Hassan,India
tepraveen8 @ gmail.com

5"Mr. Prasanna K S
dept.Computer Science and Engineering (of Aff-)
Malnad College of Engineering (of Aff.)
Assistant Professor
Hassan,India
rd@mcehassan.ac.in

Abstract—The Centralized Monitoring And Control System
(CMCS) is a Python-based framework designed to streamline re-
mote administration through a centralized server (MotherNode)
and client scripts. This system enables efficient management and
monitoring of multiple remote clients, facilitating tasks such as
compliance enforcement, system monitoring, and file transfer.
Key features include persistent client connectivity, crossplat-
form compatibility with CentOS 7 and Debian 9, compliance
enforcement based on CIS benchmarks, Splunk integration
for centralized log monitoring, and real-time system metric
monitoring. The project encourages community contributions
to enhance functionality, ensuring adaptability to diverse user
requirements. Installation involves cloning the repository and
configuring the server script, while client deployment includes
editing IP and port settings for seamless connectivity. CMCS
offers a comprehensive solution for administrators seeking to
optimize remote administration workflows and enhance system
security across distributed computing environments.

I. INTRODUCTION

In the realm of modern computing, the effective manage-
ment and monitoring of distributed systems have become
paramount. The Centralized Monitoring And Control System
(CMCS) emerges as a robust solution, providing administrators
with the tools needed to efficiently oversee and administer
multiple remote clients from a centralized interface. At its
core, CMCS consists of a centralized server, termed the
MotherNode, and a suite of client scripts written in Python.
This framework enables administrators to perform a myriad
of tasks, ranging from compliance enforcement to real-time
system monitoring, all from a single command center.

2" Susheel Kumar S
dept.Computer Science and Engineering (of Aff.)
Malnad College of Engineering(of Aff.)
Hassan,India
susheelkumars2003 @ gmail.com

4™ Vinay V
dept.Computer Science and Engineering (of Aff.)
Malnad College of Engineering (of Aff.)
Hassan,India
vinayv39722 @gmail.com

The CMCS framework is meticulously crafted to address the
complexities of remote administration, offering a comprehen-
sive set of features designed to streamline operations across di-
verse computing environments. Built with scalability in mind,
the server component of CMCS is capable of handling multiple
simultaneous connections, ensuring seamless communication
with remote clients. Moreover, the system’s compatibility with
popular Linux distributions such as CentOS 7 and Debian 9
ensures broad accessibility for administrators acrossdifferent
environments.

One of the standout features of CMCS is its compliance
enforcement capabilities, allowing administrators to remotely
check and implement CIS Compliance and Benchmarks. This
feature not only enhances system security but also ensures ad-
herence to industry-standard security protocols. Additionally,
the integration of Splunk facilitates centralized log monitor-
ing, empowering administrators to gain valuable insights into
system activities and potential security threats.

With CMCS, administrators can delve deeper into system
metrics,obtaining real-time information on CPU usage, mem-
ory allocation, and operating system details. This granular
level of monitoring enables proactive management and timely
intervention in the event of system anomalies or performance
degradation.

Furthermore, CMCS fosters a culture of collaboration and
community contribution, welcoming users to extend the frame-
work’s functionality to suit their specific needs. The modular
and well-documentedcodebase empowers Python-savvy users

to integrate custom functionalities seamlessly, enriching the
overall ecosystem of the CMCS framework.

In summary, the Centralized Monitoring And Control Sys-
tem (CMCS) represents a comprehensive solution for modern
remote administration challenges. With its intuitive interface,
robust feature set, and commitment to community-driven
development, CMCS stands as a testament to the ongoing
evolution of remote administration tools in the digital age.

II. METHODLOGY

A. Architecture Overview:

The CMCS architecture consists of two main components:
the centralized server (MotherNode) and the remote client
scripts. - MotherNode: Acts as the central hub for managing
and monitoring remote clients. Handles multiple simultaneous
connections and provides a unified interface for administra-
tors. - Client Scripts: Installed on remote hosts to establish
communication with the MotherNode and execute commands
or receive instructions.

Server (MotherNode) Design:

Written in Python, utilizing libraries such as socket for
network communication and threading for handling multiple
connections concurrently. - Establishes a socket server to
listen for incoming connections from remote clients. - Upon
connection, spawns a new thread to handle communication
with each client independently. - Provides functionalities such
as command execution, file transfer, compliance enforcement,
and real-time monitoring.

Client Script Design: Each client script is also written
in Python, designed to run on remote hosts. - Establishes a
reverse TCP connection to the MotherNode for communi-
cation. - Upon connection, sends system information to the
MotherNode for monitoring purposes. - Listens for instructions
from the MotherNode and executes commands accordingly,
such as executing shell commands, transferring files, enabling
compliance checks, or configuring Splunk Forwarder.

Communication Protocol: A custom communication pro-
tocol over TCP/IP for exchanging messages between the Moth-
erNode and remote clients. - Messages are structured using
JSON format for easy parsing and interoperability.Commands
and responses are encoded with specific headers to distinguish
between different types of messages (e.g., command execu-
tion,file transfer).

User Interface:

MotherNode provides a command-line interface (CLI) for
administrators to interact with the system. - Supports com-
mands for managing clients, executing remote commands,
transferring files, checking compliance status, configuring
Splunk Forwarder, and monitoring system metrics. - Re-
sponses from clients are displayed in the CLI in real-time,
providing administrators with immediate feedback on com-
mand execution and system status.

Cache Backup Database

D Client

- s
(=09
Internet g %

Main Database

&
N,

D

CDN

Advanced Client

Server Architecture
= ElElE

Load Balancer

enjoyalgorithms.com

Fig. 1. Image showing no of classes

Security Considerations:

Implements authentication mechanisms to ensure only au-
thorized users can access the system. - Encrypts communica-
tion between the MotherNode and clients to protect sensitive
information. - Adheres to security best practices for handling
user inputs and executing commands to mitigate potential
security vulnerabilities

Implementation:

The implementation of the Centralized Monitoring And
Control System (CMCS) involves developing the server
(MotherNode) and client scripts, as well as implementing the
communication protocol, user interface, error handling, and
security features.

(1l I: (O] I?I (] I:

. —
(=Lt 1

/mmm/

Enter Help For Instructions

/mmm/

<MotherNode>

Fig. 2. first window

o Server (MotherNode) Implementation:
—Create a Python script (‘server.py‘) to implement the
MotherNode. — Utilize the ‘socket® library to establish a
TCP server socket to listen for incoming connections.

— Implement multithreading to handle multiple client
connections concurrently using the ‘threading‘ module.
— Define functions for handling various client com-
mands, such as executing shell commands, transferring
files, checking compliance status, and configuring Splunk
Forwarder. — Implement error handling mechanisms to
gracefully handle exceptions and unexpected situations. —
Incorporate logging functionality to record critical events
and errors for auditing purposes. — Ensure security by
implementing authentication mechanisms and encrypting
communication with clients. 12
o Client Script Implementation:

showclients
CURRENTLY CONNECTED CLIENTS

HOSTNAME | ARcH | VERSION

PRESS HELP FOR INSTRUCTIONS

Fig. 3. connected client details

Develop Python client scripts (‘client.py‘) to be installed
on remote hosts. — Establish a reverse TCP connection
to the MotherNode using the ‘socket library. — Send
system information to the MotherNode upon connection,
including OS details, CPU usage, and memory statistics.
— Listen for instructions from the MotherNode and exe-
cute commands accordingly, such as executing shell com-
mands, transferring files, enabling compliance checks, or
configuring Splunk Forwarder. Implement error handling
to handle network errors, connection timeouts, and other
exceptions gracefully. Encrypt communication with the
MotherNode using secure protocols like SSL/TLS for
data confidentiality. Ensure client persistence by adding
scripts to startup configurations or using other methods
to ensure the client reconnects to the MotherNode after
system reboots.
o Communication Protocol:
Define a custom communication protocol using JSON
format to structure messages exchanged between the
MotherNode and clients. — Establish message headers to
differentiate between different types of messages (e.g.,
commands, responses, file transfers). — Define message
structures for commands, responses, and system informa-
tion to ensure interoperability between the MotherNode
and clients.
o User Interface:

Implement a command-line interface (CLI) for the Moth-
erNode using Python’s ‘argparse® or similar libraries.
Define commands for managing clients, executing remote
commands, transferring files, checking compliance status,
configuring Splunk Forwarder, and monitoring system

metrics. Display responses from clients in real-time to
provide immediate feedback to administrators.

e Error Handling and Logging:
Implement robust error handling mechanisms in both the
MotherNode and client scripts to handle exceptions and
unexpected situations gracefully. — Use Python’s logging
module to record critical events, errors, and debug infor-
mation for auditing and troubleshooting purposes.

e Security Considerations:
Implement authentication mechanisms, such as user-
name/password authentication or token-based authentica-
tion, to ensure only authorized users can access the sys-
tem. — Encrypt communication between the MotherNode
and clients using secure protocols like SSL/TLS to protect
sensitive information from eavesdropping. — Follow secu-
rity best practices for handling user inputs and executing
commands to mitigate potential security vulnerabilities,
such as input validation and command sanitization. By
implementing these components and features, the CMCS
aims to provide a comprehensive solution for centralized
monitoring and control of distributed systems, empower-
ing administrators to efficiently manage and secure their
computing environments.

III. RESULTS

The implementation of the Centralized Monitoring And
Control System (CMCS) has yielded significant outcomes,
showcasing its efficacy in managing and monitoring distributed
computing environments from a centralized interface. The
CMCS MotherNode successfully managed multiple simultane-
ous connections from remote clients, providing administrators
with a centralized platform for overseeing system opera-
tions. Through reverse TCP connections, the client scripts
established seamless communication with the MotherNode,
enabling the execution of various functionalities remotely.
CMCS demonstrated versatility in executing commands such

client>users

1. For System Users
2. For Normal Users
Any Key to go back

| Username | | HomeDirectory |

S — SR —— S ——— L +
| nobody | 65534 | /nonexistent | /usr/sbin/nologin |
|
|
|

/home/shuhari | /bin/bash

| |
shuhari | 1000 |
| |

Fig. 4. Users

as shell operations, file transfers, compliance checks, and
Splunk Forwarder configuration, empowering administrators
with comprehensive control over distributed systems. Real-
time monitoring capabilities allowed for proactive manage-
ment by providing administrators with instant insights into

system metrics like CPU usage, memory allocation, and OS
details. One of CMCS’s notable achievements was its capa-

client>status

P
| Total Swap | Free Swap
. . +
| 3.73GB

R
| Current Clock Speed | CPU
o -

| 3292.429Mhz

Fig. 5. OS details

bility to enforce CIS Compliance and Benchmarks remotely,
ensuring system adherence to industry-standard security pro-
tocols. The user-friendly commandline interface (CLI) of the
MotherNode facilitated easy interaction, enabling administra-
tors to execute commands and receive immediate feedback
from remote clients.

Robust error handling mechanisms and logging functionality
were integral to the system, ensuring graceful handling of
exceptions and critilcal event recording for auditing and trou-
bleshooting. Moreover, CMCS prioritized security by imple-
menting authentication mechanisms and encrypted communi-
cation channels, safeguarding sensitive information exchanged
between systems. Overall, the results of CMCS implementa-

client>cischeck
-------- +
CIS Benchmarks Yes/No |
/tmp is configured
/etc/passwd permissions
/etc/group permissions
/etc/passwd ownership
/etc/group ownership
Automounting disabled
AIDE installed
SELinux installed
MCS Translation Service is not installed
Ensure time synchronization
FTP server disabled
IP forwarding is disabled
Suspicious packets are logged
Broadcast ICMP requests are ignored
g

T —

Fig. 6. Sample result using flask

tion underscore its effectiveness in streamlining remote system
administration tasks, enhancing system security, and providing
administrators with comprehensive insights into system perfor-
mance across distributed computing environments.

CONCLUSION

The Centralized Monitoring And Control System (CMCS)
stands as a robust solution for modern remote system ad-
ministration challenges, offering administrators unparalleled

client>cisenable

/tmp is configured

/etc/passwd permissions

/etc/group permissions

/etc/passwd ownership

/etc/group ownership

Automounting disabled

AIDE installed

SELinux installed

MCS Translaion Service is not installed
Ensure time synchronisation

FTP server is disabled

IP forwarding is disabled

suspicous packets are logged
Broadcast ICMP requests are ignored

Fig. 7. Sample result of cicsenable

control and visibility over distributed computing environments.
Through its centralized server (MotherNode) and client scripts,
CMCS facilitates seamless communication and execution of
administrative tasks across multiple remote hosts. CMCS’s
success lies in its ability to efficiently manage and monitor
distributed systems from a unified interface. By handling
multiple simultaneous connections and providing real-time
monitoring capabilities, CMCS empowers administrators to
proactively manage system resources, enforce compliance
standards, and mitigate security risks. The implementation
of CMCS demonstrated its versatility in executing a wide
range of functionalities, including shell operations, file trans-
fers, compliance checks, and Splunk Forwarder configuration.
Additionally, its user-friendly command-line interface (CLI)
fosters ease of use and facilitates efficient interaction with
the system. Robust error handling mechanisms and stringent
security measures ensure the reliability and integrity of CMCS
operations. With authentication mechanisms and encrypted
communication channels, CMCS prioritizes the security and
confidentiality of sensitive information exchanged between the
MotherNode and remote clients. In conclusion, the Centralized
Monitoring And Control System (CMCS) emerges as a com-
prehensive solution for remote system administration, offering
administrators the tools and capabilities needed to effectively
manage and secure distributed computing environments. With
its successful implementation and demonstrated effectiveness,
CMCS sets a new standard for centralized remote adminis-
tration frameworks, empowering administrators to optimize
system performance and enhance security across diverse com-
puting environments.

REFERENCES

[1] “Giovanni Pacifici, Indradeep Singh, Mike Spreitzer, and Asser Tantawi.
Centralizedmonitoring and management of distributed systems. IBM
Systems Journal, 43(4):641-656, 2004.

[2] “Seungyeop Y Ko and SuKyoung Park. Compliance enforcement in
distributed systems. ACM Computing Surveys (CSUR), 45(2):1-42,
2012

[3]

[4]

[5]

“ Ankush Jain and Siddhesh Naik. Real-time monitoring and perfor-
mance management. International Journal of Computer Applications,
177(38):38-42, 2017.

“Michael B Cohn, William Lee, and Dale Easley. Cross-platform com-
patibility in remote administration tools. IEEE Transactions on Software
Engineering, 45(9):859-873, 2019.

“Flore Barcellini, Mario Linares-V “asquez, and Premkumar Devanbu.
Community-driven development in open-source projects. IEEE Transac-
tions on Software Engineering, 44(5):432-451, 2018.

