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Abstract: Making a model that can analyze numerous input features and predict whether a person will develop dysarthria is the first step in utilizing machine learning to forecast diseases like dysarthria. A motor speech disorder called dysarthria can be caused by a variety of underlying conditions, such as degenerative disorders, traumatic brain injuries, or neurological disorders. We used the 2000 audio signals from males and females with and without dysarthria from the TORGO data set. To extract the important features from the audio signals, we used the MFCC approach. To determine if dysarthria is present or absent, a machine learning model or algorithm will be fed with these MFCC coefficients.
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I. Introduction
Due to muscle weakness, paralysis, or poor coordination of the muscles used to produce speech, a person with dysarthria has trouble articulating speech sounds. Damage to the areas of the neurological system that regulate the lips, tongue, vocal cords, and diaphragm muscles, among others, is the root cause of this condition. Dysarthria can range in severity from slight speech impediments to severe speech impairment that makes communication difficult. Depending on the underlying cause, dysarthria's particular traits can also change. The following are examples of dysarthria's typical signs and symptoms: confused or slurred speech, difficulty in regulating speech's tone, loudness, and rhythm, articulation issues, including replacing or missing specific speech sounds, speech rate, fast or fast-paced, extremely monotone or varied speech, hoarseness or a wheezing sound in the voice, difficulties swallowing or drooling since speech and swallowing frequently use the same muscles.
There are numerous uses for machine learning-based dysarthria identification, including clinical settings and research. The following are some ways that machine learning can aid in the diagnosis and treatment of dysarthria: 
Early detection and diagnosis: To detect early indicators of dysarthria, machine learning algorithms can analyze speech patterns and traits. Early intervention and therapy are made possible as a result, which can improve the quality of life for persons impacted by the condition and decrease the disorder's progression. Traditional techniques of evaluating dysarthria frequently rely on clinicians' subjective assessments. In order to analyze speech qualities in an objective and quantitative manner, machine learning is used, which results in judgements that are more reliable and consistent. 
Progress monitoring: Algorithms for machine learning can keep track of how speech patterns alter over time. This enables therapists and medical experts to assess the success of therapy actions and change the treatment plan as appropriate. 
Remote Patient Monitoring: Machine learning may make it simpler to remotely monitor dysarthria as telemedicine advances. Without the need for frequent in-person sessions, patients can supply speech samples from their homes and machine learning algorithms can evaluate their improvement. 
Research Insights: Machine learning can help scientists better understand the different traits and subtypes of dysarthria. Large datasets can be analyzed to help researchers better understand the underlying origins, course, and potential treatments for the condition. 
A. Objectives 
The objectives of the system can be summarized as follows- 
● To extract relevant speech features from the dataset to represent different aspects of speech production. 
● To develop and compare machine learning and Deep Learning models for dysarthria prediction using the extracted features. 
● To assess the models' performance using pertinent metrics such as accuracy, sensitivity, and specificity.
 
II. Literature Review 
The Diagnostic Use of Prosody, Acoustics, Phonation, and Glottal Functional Aspects in the Context of Dysarthria. The performance of the 4 fundamental deep learning architectures: DNN, CNN, Gated Recurrent Units (GRU), and Learning Stem Machine Model (LSTM) The performance is specifically evaluated using the CQCC (constant-q cepstral co-ordinates) and the Mel-frequency coordinates (mfcc). DNN classifiers are used to evaluate the articulatory, phonetic, prosodic & glottal functions. The concatenated set of features is dimensionally reduced and the results are closely evaluated. [1] 
Mel-frequency cepstral coefficients (MFCCs) are chosen as the essential traits for dysarthria prediction. Utilizing an audio Mel-spectrogram format and the ResNet50 architecture for transfer learning, a CNN model is used. 9094 samples in total, divided into test and training sets, make up the dataset. After ten training epochs, the model yields a 97.73% test accuracy along with precision, recall, and F1 score values of 0.89, 0.81, and 0.99, respectively. [2] 
This study focuses on the diagnosis of dysarthria, a speech communication issue linked to neurological disorders, using deep learning models and scalogram pictures. The work presents a unique method using wavelet modification to convert dysarthric speech sounds into 2D scalogram images, collecting spectral properties across many scales. Then, using these scalogram images, pre-trained convolutional neural networks (CNNs) like AlexNet, GoogleNet, and ResNet 50 are used to categorize dysarthria. The research highlights the advantages of utilizing acquired characteristics from these networks and exhibits that the suggested method surpasses substitute machine learning techniques in the dysarthria identification system. By using scalogram images and deep learning, this research contributes in a novel way, departing from earlier studies that investigated various feature extraction techniques and machine learning algorithms for the detection of dysarthria. It has been demonstrated that pre-trained CNNs are more accurate and efficient at differentiating between normal and dysarthric speech. This work fills a major vacuum in the field by fusing state-of-the
art deep learning architectures with sophisticated signal processing methods, providing a potential path towards quicker and more accurate dysarthria detection and classification. [3] 
The study explores the developments in audio signal processing, with a special emphasis on feature extraction methods. Analyzing signals, obtaining their characteristics, forecasting behavior, identifying patterns, and correlating signals are all part of audio signal processing. This study emphasizes the integration of modern machine learning (ML) techniques with audio signal processing in order to address a number of issues. Since the nature of the highlights utilized for preparing and testing influences how well AI calculations perform, highlight extraction is a urgent move toward the AI cycle. A thorough overview of feature extraction methods, encompassing temporal, frequency, cepstral, wavelet, and time-frequency domains, is given in this study. To learn more about the various feature extraction methods applied in audio signal processing, the authors reviewed the literature. The approaches were categorized according to various domains, including temporal, frequency, cepstral, wavelet, and time-frequency. Every category underwent a thorough analysis, covering the underlying theories and practical uses of the methods. Information from research publications, conference proceedings, and other pertinent sources in the fields of machine learning and audio signal processing were gathered for the survey. The survey found that there has been a noticeable advancement in the field of audio signal processing, especially with regard to the incorporation of machine learning methods. When it comes to improving the efficiency of machine learning algorithms for tasks like prediction, pattern recognition, and classification, feature extraction techniques are essential. This paper offers a thorough grasp of the applicability and efficacy of feature extraction techniques in audio signal processing tasks by examining them in a variety of domains. The survey's literature selection process may have been biased, leaving out certain pertinent studies, which could be one of the study's limitations. Furthermore, the study does not go into great detail on other facets of audio signal processing, instead concentrating mostly on feature extraction methods. It's also possible that the survey lacked a thorough examination or comparison of the merits of various feature extraction techniques for particular uses cases.[4] 
The study paper discusses the difficulty of voice recognition for Japanese people with athetoid cerebral palsy who have articulation problems. Individuals with dysarthria exhibit unstable and indistinct speech, which presents a challenge for traditional speech recognition algorithms. The inquiry proposes an end-to-end speech recognition system that utilises information from both Japanese non-dysarthric speech data and non-Japanese dysarthric speech data by applying transfer learning techniques. The suggested approach seeks to greatly enhance speech recognition performance by pre-training the model with these various datasets and fine-tuning it with target Japanese dysarthric speech. To address the lack of available dysarthric speech data, the researchers use a transfer learning strategy. Both language-independent and language-dependent characteristics derived from dysarthric speech data in non-Japanese and non-dysarthric speech data in Japanese are used. The model is fine-tuned using the target Japanese dysarthric speech, having previously been trained using these datasets. Language-specific decoder modules allow speech data from two different languages to be handled within a single model. These modules facilitate the efficient integration of information transfer. Comparing the suggested strategy against alternative approaches that do not make use of extra speech data, experimental results show how effective it is at enhancing speech recognition performance. By utilising information from both non-dysarthric and dysarthric speech data, the transfer learning approach improves the model's capacity to precisely identify dysarthric speech. In order to solve data scarcity difficulties in dysarthric voice recognition, the research highlights the potential of transfer learning techniques by demonstrating notable gains in recognition accuracy. The study's generalizability of the suggested method to other languages and speech impairments may be one of its limitations. The nature and accessibility of the speech data may affect the transfer learning's efficacy. Furthermore, even though the suggested approach yields encouraging results, more testing on bigger and more varied datasets is required to evaluate its resilience in other settings and demographics.[5] 
With a focus on long short-term memory (LSTM) and convolutional neural networks (CNNs), the study investigates the automatic recognition of dysarthric speech using deep neural networks (DNNs). Speech intelligibility is frequently compromised in dysarthria, an illness of speech communication associated with abnormalities in the nervous system. In order to train and assess dysarthric speech recognition systems, the study looks at three different input characteristics: mel-frequency spectral coefficients (MFSCs), mel-frequency cepstral coefficients (MFCCs), and perceptual linear prediction features (PLPs). To choose the best dysarthric speech recognizer, it also compares the performance of CNN- and LSTM-based architectures with a baseline system that uses hidden Markov models (HMMs) and Gaussian mixture models (GMMs). In order to compare how well different DNN architectures performed for dysarthric voice recognition, the researchers ran tests. They made use of CNNs and LSTM networks that have MFCCs, MFSCs, and PLPs as their various input properties. HMMs and GMMs were used in the evaluation process to compare these DNN-based systems to a baseline system. The goal of the experiments was to identify the best architecture for dysarthric speech detection. According to experimental data, the CNN-based system that used PLP traits had the highest recognition rate, up to 82%. This performance is a relative improvement over LSTM- and GMM-HMM-based systems of 11% and 32%, respectively. The study shows that DNN designs, in particular CNNs, are more effective than more conventional techniques like HMMs and GMMs at enhancing the dysarthric speech recognition system's accuracy. The very limited dataset utilized for experimentation may be one of the study's limitations, which could restrict how far the findings can be applied. Furthermore, other areas of speech processing or communication impairments are not explored; instead, the study concentrates on dysarthric speech recognition. Larger and more varied datasets for future research may yield more comprehensive understandings of the efficacy and scalability of DNN-based methods for dysarthric speech recognition and analysis.[6] 
This study compares the efficacy of glottal source information with conventional techniques for the identification of diseased voice. It compares the standard pipeline approach, enhancing the dysarthric speech recognition system's accuracy. It leverages deep learning architectures as an end-to-end technique for feature extraction and categorization. In the pipeline technique, glottal features generated by the quasi
closed phase glottal inverse filtering method are combined with openSMILE characteristics to create support vector machine (SVM) classifiers for data classification. The end-to-end method uses raw speech signals and raw glottal flow waveforms to train multilayer perceptron’s (MLPs) and convolutional neural networks (CNNs), or long short-term memory (LSTM) network architectures. The study uses three publicly accessible databases with dysarthric and dysphonic voices to compare how well the two approaches perform. The study uses end-to-end and conventional pipeline methods for the identification of abnormal speech. Glottal features and openSMILE features are merged in the pipeline approach and used to train SVM classifiers. Glottal flow waveforms and raw speech signals are input into CNN-MLP or CNN-LSTM architectures in the end-to-end technique. Three freely available databases are available for testing (UA-Speech, TORGO, and UPM) with dysarthric and dysphonic voices are utilized. Accuracy measurements are used to evaluate performance. Glottal features paired with openSMILE features yield the greatest results when using the classic pipeline approach. On the other hand, the end-to-end method that uses raw glottal flow waveforms as input shows higher accuracy than the one that uses raw speech waveforms. In particular, using glottal flow waveforms improves accuracy by roughly 2-3% across all three databases. For instance, accuracy with glottal flow is 87.93%, 81.12%, and 76.66% for the UA-Speech, TORGO, and UPM databases, respectively, whereas accuracy with raw speech is 85.12%, 78.83%, and 73.71%. The study's reliance on publicly accessible datasets, which might not accurately reflect the range of pathological voice disorders seen in clinical settings, could be one of its limitations. Furthermore, the impact of various deep learning architectures or feature combinations on performance is not thoroughly explored in this study. These areas might be explored in more detail to improve the identification of disordered voice.[7] 
In order to help people with speech problems, especially dysarthria, the study presents a novel method for assistive speech technology: the Histogram of States (HoS)-based method. The speech deficits associated with dysarthria, such as distorted vowels and breathy voice, present a challenge to conventional automated speech recognition (ASR) systems. The suggested technique uses a Deep Neural Network
Hidden Markov Model to learn compact and discriminative embeddings from dysarthric voice utterances (DNN-HMM). The best state sequences selected from word lattices produced by the DNN-HMM model are the source of these embeddings. A discriminative model-based classifier is subsequently employed for voice recognition with impairments. The research evaluates the performance of the HoS-based strategy and compares it with the traditional HMM and DNN-HMM-based algorithms using a total of three datasets. The method for impaired speech recognition used in the study is based on the Histogram of States (HoS). In order to represent dysarthric spoken utterances, this method generates word lattices using a DNN-HMM model, from which the best state sequences are recovered. To identify these embeddings, a classifier based on a discriminative model is utilised. To evaluate the method, three datasets containing samples of dysarthric speech are utilised: 100 common terms from the UA-SPEECH database, a 50-word dataset from the TORGO database, and 15 acoustically comparable words. The experimental results demonstrate that the proposed HoS-based technique outperforms the conventional HMM and DNN-HMM-based systems for degraded speech recognition across all three datasets. The HoS-based method achieves substantially enhanced accuracy because it can learn concise and discriminative incorporation from dysarthric speech utterances. The study demonstrates how well the suggested method works to improve speech recognition for those with impairments. The small size and lack of diversity of the datasets utilized for evaluation could be one of the study's limitations. Furthermore, the study doesn't investigate if the suggested methodology can be scaled to bigger and more varied datasets. The HoS-based method's robustness and generalizability to different speech impairments and situations might be explored in more research.[8]
III. SYSTEM FLOW DIAGRAM
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Figure 3.1. System Block Diagram

1.  Import and Load data:

· Importing: In this step, you import the necessary Python libraries and modules. Common ones for this task might include NumPy for numerical operations, matplotlib for plotting, and librosa for audio processing tasks.
· Loading Data: You load your audio dataset into your program. This can be a collection of audio files in a specific format
2. Data visualization:

· Exploratory Data Analysis (EDA): Visualize and explore your audio data to gain insights. This can involve plotting waveforms, spectrograms, or other relevant visualizations. Understanding your data helps in making informed decisions during the modeling process.

3. MFCC extraction:

· Feature Extraction: Features known as Mel-Frequency Cepstral Coefficients (MFCCs) are frequently employed in audio processing applications. The short-term power spectrum of an audio signal is represented by these coefficients. A well-liked library for removing MFCCs from audio signals is called Librosa.

4. Feeding into CNN model:

· Model Architecture: Define a Convolutional Neural Network (CNN) architecture suitable for your task. CNNs are effective in learning hierarchical features, which can be beneficial for audio-related tasks.

· Data Preparation: Organize your data, often in batches, and feed it into the CNN. This involves converting your extracted MFCCs into a format suitable for input into the neural network.

5. CNN layers:

· The network automatically identifies pertinent elements in the input data. Local feature extraction is done by the convolutional layers; non-linearity is introduced by the activation layers; critical information is focused on and down sampled by the pooling layers; and decision-making is done by the fully connected layers, which aggregate these features.

6.Output:

· Model Prediction: Run your data through the trained CNN model to get predictions. Predicting classes or labels associated with the input audio samples.

7. Evaluation:

· Performance Metrics: Evaluate the performance of your model using appropriate metrics. Common metrics for classification tasks are F1 score, recall, accuracy, and precision. Understand how well your model is performing and if any adjustments are needed.

IV. Methodology
Data Loading and Exploration:

This section involves loading the necessary libraries and the dataset, followed by initial exploration and understanding of the data. The TORGO dataset was utilized, comprising 2000 samples, 500 for each of the following categories: non-dysarthric males, non-dysarthric females, dysarthric males, and dysarthric females.

Importing Libraries: 

The required Python libraries are imported, including NumPy, pandas, matplotlib, seaborn, librosa, and scikit-learn. These libraries provide tools for data analysis, visualization, audio processing, and machine learning.

Loading Data: 

The dataset is loaded using the pandas library. The pd.read_csv() function reads a CSV file containing information about audio files and their associated attributes, such as file names, gender, and dysarthria status.

Data Inspection: 

Basic exploratory analysis is performed on the loaded data. This might include looking at a few initial rows using the head() function and checking the shape and data types using the shape and dtypes attributes of the DataFrame.

Data Visualization:

Waveplot:

This helps in observing the patterns and speech characteristics of the audio.
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              Figure 4.1. Dysarthria-  Male

For the dysarthric samples it can be observed that the one male sample taken here has a slurred speech as is evident by the waveplot.
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Fig.4.2. Dysarthria-Female
While the female sample speech is quite rapid and difficult to understand due to the words overlapping with each other as is indicated by the box-like patterns forming in the waveplot.
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Fig.4.3. Non-dysarthria Male
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Fig.4.4. Non-Dysarthria -female
The non-dysarthric samples have a regular waveplot indicating a regular-paced speech.
Feature Extraction:

Define a function to extract Mel-frequency cepstral coefficients (MFCCs) from audio samples. Apply the MFCC extraction function to all the audio samples in the dataset. Collect the extracted MFCC features into an array.
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Fig.4.5. MFCC block diagram

For the feature extraction through MFCC technique, we undergo the following steps [4]:

1. A/D conversion- By sampling audio segments and converting the analog signal into discrete numbers, A/D conversion digitizes content. Usually, 8 or 16 kHz sampling frequencies are employed.

2. Pre-emphasis-                                         

Vowels and voiced segments become more noticeable at lower frequencies than at higher frequencies due to pre-emphasis, which also amplifies energy in the high frequencies. The term "spectral tilt" describes the way the glottal source produces sound through the vocal folds. By increasing high-frequency energy, the acoustic model can better access information in higher formants, leading to an improvement in phone detection accuracy.

3. Windowing-

We will divide the audio stream into multiple segments, each lasting 25 ms and separated by 10 ms, to handle the large number of phones in it. We are going to extract 39 features from each chunk. We will use Hamming/Hanning windows instead of rectangular ones to prevent noise introduction in the high-frequency band caused by sudden amplitude dips at the signal's edges during splitting. Each frame's analysis is improved by applying a window function, such as the Hamming window, which lowers spectral leakage at the frame's edges.

4. DFT-

With each windowed frame, the time-domain signal is transformed into the frequency domain using FFT. As a result, the power spectrum is created, which shows the signal's frequency composition with time.
5. Mel Filterbank-

There are differences between how humans hear and how machines hear. Lower frequencies are more perceptible to human ears than higher ones. The performance of the model has been observed to increase when a human hearing model is incorporated into the feature extraction procedure. The power spectrum is processed using triangular filters placed on the Mel frequency scale in order to replicate this sensitivity. With a wider spacing in higher frequencies and a closer spacing in lower frequencies, these filters closely resemble human hearing.

6. Logarithm- 
Human auditory perception demonstrates that as sound energy increases, so does our sensitivity to changes in sound energy. This feature is similar to how the logarithmic function behaves, in that its gradient gets stronger for lower input values and gets smaller for larger input values. We use the logarithmic transformation on Mel filter output to simulate the logarithmic sensitivity present in the human auditory system. With formal elegance and precision, this method replicates and simulates the complex hearing capacities of the human auditory system.

7. MFCC coefficients-

Human sensitivity to variations in signal strength is less sensitive at higher auditory signal energy levels than it is at lower energy levels. This pattern is consistent with the properties of the logarithmic function, which show an ascending gradient at lower input values and a dropping gradient at bigger input values. We apply the logarithmic function to Mel filter outputs in an attempt to mimic the logarithmic sensitivity present in human hearing. By simulating the complexities of the human auditory system, this method allows us to express the logarithmic sensitivity of auditory signals in a formal and engaging way. 



V. Algorithm Used
A. CNN (Convolutional Neural Networks)

	Layer
	Activation
	Params

	Conv2D(1)
	Relu
	160

	MaxPooling2D
	-
	-

	Conv2D(2)
	Relu
	2320

	MaxPooling2D
	-
	-

	Flatten
	-
	-

	Dense
	Relu
	2064

	Dense
	Sigmoid
	17


Fig.5.1. CNN parameters
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Fig.5.2. CNN Layers Architecture
1. Input Layer: The input layer is the first layer of a neural network, especially Convolutional Neural Networks (CNNs). In the context of audio processing, this layer's representation of the raw input data could take the shape of waveforms or other audio representations like spectrograms or Mel-frequency cepstral coefficients (MFCC). 

2. Spectrograms/MFCC Coefficients: Common representations of audio signals used in machine learning applications are spectrograms and MFCC coefficients. MFCC coefficients are a concise representation of an audio signal's power spectrum, whereas spectrograms offer a two-dimensional representation of audio signals in the time-frequency domain.

3. Convolutional Layers (Kernel Filters, ReLU): Convolutional layers apply convolution operations to the input data using small square filters, also known as kernels. These filters multiply and sum the values element-by-element as they slide over the input. As a result, the network can learn spatial feature hierarchies. Rerectified linear unit (ReLU) activation function is widely used to introduce nonlinearity by replacing negative values with zero after convolution.

4. Pooling Layer: Pooling layers reduce the spatial dimensions of the input volume, which helps reduce computational complexity and control overfitting. A popular method called "max pooling" is when the maximum value within a small spatial region is retained, discarding other values. Average pooling is another technique where the average value within the region is retained.

5. Flattening: In a neural network, fully connected layers carry out high-level reasoning after a number of convolutional and pooling layers. To connect these layers, the two-dimensional output from previous layers is flattened into a one-dimensional vector. This allows the network to process extracted features as a single long vector. 

6. Dense Layers: Dense layers, also called completely connected layers, manage the features from flattened preceding levels. Each neuron in a thick layer is connected to all the other neurons in the layer above it, hence complex patterns can be learned. Depending on the goal, these layers frequently function as regression models or classifiers.

7. SoftMax Function: For multi-class classification jobs, the SoftMax function is frequently utilized in the output layer. It converts the previous layer's raw output scores into a multiple-class probability distribution. The probability that an input belongs to a particular class is represented by each class probability.

8. Output Layer: The neural network's ultimate prediction or output is generated by the output layer. It frequently outputs the probability for each class using the SoftMax activation function for classification tasks. The output layer for regression tasks might generate continuous data by using a linear activation function. 
In summary, CNNs leverage these layers in a hierarchical manner to learn and extract features from input data, enabling them to understand complex patterns and make predictions or classifications based on the learned features.
VI. Result
A tabular representation of a classification model's performance is called a confusion matrix. It offers a useful evaluation of the precision and effectiveness of a machine learning model by breaking out the true positive, false positive, true negative, and false negative predictions.

1.Training Data- A model is trained on a labelled dataset in which the true class labels are known during the training phase. The model's ability to classify the training instances is indicated by the confusion matrix for the training data. It displays how many predictions the model made on the training set of data—true positive, true negative, false positive, and false negative.
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                    Fig.6.1. Confusion matrix- Training Data
 2.Testing Data- After the model has been trained, it is assessed using testing data, also known as validation data, which is a different dataset. Examples from this dataset are not in the model's training set. The confusion matrix of the testing data illustrates the model's capacity to generalize to new, unseen situations. It shows how many true positive, true negative, false positive, and false negative predictions the model made based on the testing data.
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                                                                    Fig.6.2. Confusion matrix- Testing Data
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Fig.6.3. Training accuracy vs No of epochs

A key component of training machine learning models is understanding the link between training accuracy and epoch count. During training, an algorithm iteratively adjusts its parameters to minimize the difference between expected and actual outputs. The model has more chances to learn from the training data as the number of epochs rises, which could lead to an improvement in performance. Training accuracy initially tends to increase as the model learns more about the underlying patterns in the data. There is a threshold beyond which additional epoch increments run the risk of overfitting. Overfitting occurs when a model becomes extremely specialized in the training set and is unable to generalize well to new, untested data.
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  Fig.6.4. Overall performance of model

Impressively, the CNN model for dysarthria prediction had a 96% accuracy rate. This astounding degree of precision highlights how well convolutional neural networks identify patterns and characteristics associated with dysarthria identification. This high accuracy shows how well the model can categorize speech samples, telling the difference between normal and dysarthric speech with amazing accuracy. The CNN model's strong performance points to its possible use in practical settings, such as the early detection and treatment of dysarthria. This outcome bears positive implications for the evolution of technology-driven solutions in the field of speech pathology and allied healthcare domains, in addition to demonstrating the efficacy of the selected machine learning approach.

VII. Conclusion

In this work, we introduced a machine learning model that predicts the presence of dysarthria, a motor speech impairment, based on audio signals. As part of the approach, relevant features known as Mel-frequency cepstral coefficients (MFCCs) were retrieved from a dataset that contained audio recordings of individuals with and without dysarthria. Next, using the features that were extracted, convolutional neural networks (CNNs), one kind of machine learning model, were trained and evaluated.

The literature review highlighted the significance of machine learning in dysarthria detection, emphasizing early diagnosis, progress monitoring, remote patient monitoring, and research insights. Numerous studies investigated various feature extraction methods and algorithms, such as CNNs, MFCCs, and deep neural networks, and showed encouraging performance and accuracy outcomes.

The results were evaluated using confusion matrices for both training and testing data. Training accuracy versus the number of epochs graphs provided insights into the learning process, with a balance between learning from the data and avoiding overfitting. Based on pertinent measures, the model's overall performance was evaluated.

In conclusion, the proposed model demonstrates the potential of machine learning, particularly CNNs, in predicting dysarthria based on audio signals. The methodology, feature extraction, and algorithm selection contribute to the growing body of research aimed at leveraging technology for early disease detection and monitoring. Further research and validation on larger datasets can enhance the robustness and generalizability of the model, ultimately contributing to advancements in the field of dysarthria diagnosis and treatment.

VIII. Future Scope

The potential for machine learning, especially convolutional neural networks (CNNs), to detect dysarthria moving forward is considerable and encouraging. As neurological disorders become more commonplace and the need for precise yet timely diagnosis intensifies, the technology holds extensive prospective applications.

As machine learning algorithms continue to advance, the precision and efficiency of dysarthria detection can be further enhanced. This could result in faster and more accurate diagnoses, which would have significant impacts on patient care and treatment outcomes. Developing larger and more diverse datasets for dysarthria detection would provide more opportunities to train and test machine learning models. This could lead to improved generalization of the models across different populations and speaking styles, making them more robust and reliable. Incorporating multiple modalities, such as acoustic, linguistic, and articulatory features, into the machine learning models could boost the accuracy and robustness of dysarthria detection. This could also enable developing more comprehensive diagnostic tools that take into account various aspects of speech and language. 

Integrating machine learning models into clinical settings could enable real-time dysarthria detection, allowing for prompt and appropriate interventions. This could have significant impacts on patient outcomes and quality of life. By analyzing individual differences in speech patterns and language use, machine learning models could be trained to detect dysarthria in specific populations, such as children or older adults. This could lead to more personalized and effective treatments for dysarthria. Future research could compare the performance of machine learning models with other techniques for dysarthria detection, such as rule-based systems or acoustic analysis. This could provide valuable insights into the strengths and limitations of each approach and guide developing more effective diagnostic tools.
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