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Abstract— Software development and the maintenance life cycle are lengthy processes. However, the possibility of having defects in the software can be high. Software reliability and performance are essential measures of software success, which affects user satisfaction and software cost. Predicting software defects using machine learning (ML) algorithms is one approach in this direction. Implementing this approach in the earlier stages of the software development improves software performance quality and reduces software maintenance cost. Different models and techniques have been implemented in many studies to predict software defects. This investigation implements ML algorithms, such as artificial neural networks (ANNs), random forest (RF), random tree (RT), decision table (DT), linear regression (LR), gaussian processes (GP), SMOreg, and M5P. A new software defect prediction model for software future defect prediction is proposed. The defect prediction is based on historical data. The results showed that a combination of ML algorithms could be used effectively to predict software defects. The SMOreg classifier scored the best performance results, where the ANN classifier scores the worst results.
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I. INTRODUCTION
In the last few years, software quality became one of the most critical aspects of the software. Software defect prediction is an essential part of the software development cycle, and it can increase software quality, performance and reduce maintenance costs. Defective software directly impacts software quality leading to higher software costs, delayed project plans, and higher maintenance costs. On the other hand, applying a software defect prediction model on the software before its deployment improves software performance and increases its reliability and user satisfaction. In this study, the software prediction performance was assessed using eight machine learning (ML) algorithms. The algorithms include artificial neural networks (ANNs), random forest (RF), random tree (RT), decision table (DT), linear regression (LR), gaussian processes (GP), SMOreg, and M5P. Weka 3.8.3 tool has been used to run the algorithms using the k-fold cross-validation and percentage split techniques. Dataset used in this work was obtained from a publicly available repository from NASA Promise [1]. The data set was validated using two test modes: 10-fold cross- validation and percentage split with different training set percentages (60%, 70%, 80%, 90%). Using the WEKA tool, the two test modes applied the data classification on the eight ML algorithms.


In this investigation, different evaluation measures will be used to assess software defect prediction accuracy. According to the results of these measures, we can decide which ML algorithms we can use for software defect prediction. The evaluation metrics include correlation coefficient (R²), mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), and root-relative squared error (RRSE). The ML algorithm with the lowest error rates can be considered the most appropriate algorithm to apply in the prediction process.
The other sections of the paper are structured as follows: the literature review related to software prediction techniques is presented in Section II; background knowledge and description of the used Machine Learning algorithms are discussed in Section III; the dataset with evaluation methodology and experimental results are presented in Sections IV and V, respectively; the conclusion and future work are discussed in Section VI.
II. LITERATURE REVIEW
Many studies used machine learning (ML) algorithms to measure software defect prediction performance [2], [3], [4]. A recent study analyzed different ML algorithms’ performance in software defect prediction. The ML algorithms used are NB, MLP, RBF, SVM, KNN, K*, OneR, PART, DTree, and RF [3]. The researchers of this study implemented the ML algorithms on 12 publicly available NASA datasets. This study evaluated the results using various measures, like accuracy, recall, precision, F-measure, ROC area, and MCC. Another study proposed a software defect prediction model based on a neural network using a levenberg-Marquardt (LM) algorithm [4]. In this study, the proposed model is compared with the polynomial neural network, and they found that the proposed model has higher accuracy results. M. Ahmad et al. reviewed different ML algorithms, lexicon-based techniques, and hybrid techniques, which combines ML algorithms and lexicon technique for automatic sentiment classification for user-generated data from various social media and blogging websites [5]. Arora et al. proposed a software defect prediction model. The proposed model is comparing two ML classifiers, which are ANN and SVM [6]. The study performed using seven datasets from the PROMISE repository and assessed the results on various measures using accuracy, recall, and specificity. The SVM is better than ANN when evaluating the recall measure results. Alsaeedi and Mustafa compared SVM, DTree, and RF classifiers on ten publicly available NASA





datasets. The results revealed that the RF algorithm outperforms other classifiers [7].
A cross-project defect arises when different projects working together, which causes a class imbalance problem in machine learning prediction. Many studies proposed different methods to overcome the cross-project defect prediction problem [7], [8], [9], [10], [11]. Goel et al. conducted an empirical analysis to evaluate whether the data sampling approach can solve the class imbalance issue and enhance the cross-project defect prediction (CPDP) model performance [12]. In this study, machine learning classifiers have been implemented using twelve publicly available object-oriented datasets. The results showed that the data sampling technique could be implemented to overcome the class imbalance problem on CPDP. Another study proposed an over-sampling transfer learning technique that uses the feature weighting naïve Bayes approach for CPDP [13]. Experiments were implemented on eleven public datasets. The results showed that this approach is beneficial for solving class imbalance in the CPDP model.
Most of the proposed software defect prediction models achieved a prediction performance rate of about 80% recall. As a result, Bowes et al. investigated four ML algorithms’ performance levels, which are RF, naïve Bayes, RPart, and SVM, when predicting defects in NASA datasets [14]. The defect prediction results are presented in the confusion matrix and compared with each algorithm prediction uncertainty. Each classifier detects different sets of defects. The study concluded that a specific classifier could identify a subset of errors, and some algorithms can perform best in defect prediction if they are not based on majority voting.
According to many studies and surveys, software defect prediction models that are highly dependent on features of programs fail in detecting the semantics of programs [15], [16]. For instance, Maurice computed Halstead metrics using numbers of operators and operands [17]. Chidamber et al. calculated Chidamber and Kemerer (CK) metrics using the function and inheritance counts [18]. Thomas et al. used McCabe’s metric by analyzing the software control flow graph to estimate its complexity [19]. As a result, the algorithm performance is not so high, even after adopting learning algorithms and filtering the data. Accordingly, a recent study for Phan et al. proposed a different software defect prediction approach to detect software defects by constructing control flow graphs extracted using a source code compilation [20]. Moreover, Phan applied multi-view convolutional neural networks with the multi-layer networks to the extracted control flow graphs to learn the semantic software features. The results showed that the performance of the defects prediction was higher than the previous techniques.
Rosli et al. proposed an application to detect software defects using genetic algorithms [21]. The app uses object- oriented metrics as input values to the algorithm and classifies the software modules as defective and non- defective. Cui et al. recent study proposed a novel software defect prediction model based on Genetic Algorithm and Back Propagation (GA-BP). The purpose of the model is to overcome the BP of neural networks, which can easily fall into local optimization when implementing software defect

prediction [22]. GA is used to enhance the weights in BP neural networks. According to the results, this method is useful in software defect prediction.
Rahman proposed a software defect prediction using code profiles as a replacement for traditional measures [23]. This study trains the ML algorithm using vectors. The vectors are generated from the source codes’ parse trees by analyzing language feature use. The parse trees are used as feature variables. Replacing the traditional metrics for predicting software defects with the code profiles are promising. However, the predictive performance can be considered as low in cross-version defect predictions for both metrics-based and code profile-based techniques.
In this investigation, a software defects prediction model will be proposed using eight ML algorithms. The algorithms include artificial neural networks (ANNs), random forest (RF), random tree (RT), decision table (DT), linear regression (LR), gaussian processes (GP), SMOreg, and M5P. This study aims to assess the performance of the ML algorithms in predicting software defects. The performance of the used ML algorithms will be assessed using PROMISE Repository software engineering publicly available dataset, namely, Class-level data for KC1 (one of NASA products). WEKA tool will be used to run the eighth ML algorithms using two test modes: 10-fold cross-validation and percentage split. Different evaluation metrics will be used to measure the performance accuracy of the used ML algorithms. The evaluation metrics include: correlation coefficient (R²), mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), and root-relative squared error (RRSE).

III. RESEARCH METHODOLOGY

A. DATASET AND EVALUATION METHODOLOGY
In this investigation, a PROMISE repository software engineering publicly available dataset, namely, class-level data for KC1 (one of NASA products), was used. The dataset contains class-level and method-level attributes. Koru et al. converted 21 method-level attributes into 84 class-level attributes using maximum, minimum, average, and sum operations [24]. Besides the 84 attributes, the dataset consists of 10 class-level attributes to create 94 class-level attributes. The last numeric attribute represents the number of recorded class defects, and it is called NUMDEFECTS. It has been used as a response variable that will be used by ML algorithms in the prediction process. The dataset has 145 instances, which contains real measured data for one of NASA products for KC1. The dataset was used in several studies [25], [26], [27], [28], [29], [30]. Table I presents the first ten class-level attributes and the last NUMDEFECT attribute.


TABLE I. NUMERIC ATTRIBUTES DESCRIPTION OF KC1 DATASET

	Item No.
	
Attribute
	
Description

	
1
	
PERCENT_PUB_DATA
	The percentage of data that is public and protected data in a class.

	
2
	
ACCESS_TO_PUB_DATA
	The number of times that a class's public and
protected data is accessed.

	
3
	
COUPLING_BETWEEN_O BJECTS
	The number of distinct non-inheritance-related
classes on which a class depends.

	4
	DEPTH
	The level for a class.

	
5
	LACK_OF_COHESION_O F_METHODS
	The percentage of the methods in the class.

	
6
	
NUM_OF_CHILDREN
	The number of classes
derived from a specified class.

	
7
	
DEP_ON_CHILD
	Whether a class is dependent on a descendant.

	8
	FAN_IN
	Count of calls by higher modules.

	
9
	
RESPONSE_FOR_CLASS
	Count of methods
implemented within a class.

	
10
	WEIGHTED_METHODS_ PER_CLASS
	Count of methods
implemented within a class.

	
11
	
NUMDEFECTS
	
No. of Defects



Fig. 1. illustrates the model and the research methodology used for software defect prediction. The KC1 dataset was used for the prediction process and analysis. The training and testing of the dataset were done using the 10-folds cross- validation. The results of the classifiers are then evaluated using different error measures and metrics [31].

Fig. 1. Software Defect Prediction Model

The statistical metrics include correlation coefficient (R²), mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), and root relative squared error (RRSE). These metrics measure the error rate between the number of actual defects and the number of predicted defects in the dataset. Assuming 𝐸 is the number of
actual  defects,  𝐸̃   is  the  number  of  predicted  defects,  𝐸̅


represents the mean of E, and 𝑛 represents the number of instances. The following formulas represent the used performance metrics in the prediction process:

1. R²

	∑𝑛   (𝐸𝑖 − 𝐸̃𝑖)2
𝑅2 = 1 −    𝑖=1	
∑𝑛   (𝐸𝑖 − 𝐸̃𝑖)2
𝑖=1
	
(1)



2. MAE

	1	𝑛	̃
𝑀𝐴𝐸 = 𝑛 ∑	|𝐸𝑖 − 𝐸𝑖|
𝑖=1
	
(2)


3. RMSE

	1	𝑛	2
𝑅𝑀𝑆𝐸 = √   ∑	(𝐸𝑖 − 𝐸̃𝑖)
𝑛	𝑖=1
	(3)




4. RAE

	 ∑𝑛 |𝐴𝑖 − 𝐴̃𝑖|
𝑅𝐴𝐸 =	𝑖=1	
∑𝑛 |𝐴𝑖 − 𝐴̅𝑖|
𝑖=1
	
(4)



5. RRSE

	∑𝑛   (𝐴𝑖 − 𝐴̃𝑖)2
𝑅𝑅𝑆𝐸 = √  𝑖=1	
∑𝑛  (𝐴𝑖 − 𝐴̅𝑖)2
𝑖=1
	(5)



R2 gives how much the actual and predicted values are related.    These    values     range     between −1 and 1, where 1 indicates correct positive linear relation, 0 means there is no relation, and −1 means correct negative linear relation. MAE is the average of the difference between the actual and the predicted values. RMSE is quite like MAE, but RMSE represents the square’s average of the difference between the actual and the predicted values. As a result, the focus will be on more significant errors than on smaller errors [32]. RAE gives the average of the actual values, so the error is   the   total   absolute    error.    RRSE    is    similar    to the RAE because it is the average of the actual values, but the error is the total squared error [33].
B. USED MACHINE LEARNING ALGORITHMS Machine learning (ML) uses multiple algorithms to
analyze input data and predict output values. Machine learning algorithms learn and improve performance and help with automating the labeling process. Each ML algorithm is purposed to perform a specific task [34]. In this study, the performance of eight ML algorithms was measured to predict software defects. These ML algorithms are summarized as the following:
· Artificial Neural Networks (ANNs):
ANNs are complicated systems that simulate the function of the human nervous systems. They are made up of artificial neurons and can be used in ML implementations as a non- linear classifier by taking in multiple inputs and producing a single output. The input neurons are connected and work together in parallel by sending a signal to other neurons and using a non-linear function to calculates its output [35].


· Random Forest (RF):
RF algorithm is a supervised classification and regression learning algorithm. It produces a forest of decision trees and selects the best solution using committee voting rather than an individual tree decision [36].
· Random Tree (RT):
RT is a graphical representation of all possible solutions based on specific conditions. We call it a tree because basically, it starts with a root and has many branches that produce multiple sets of data to make a decision tree [37].
· Decision Table (DT):
DT is an organized model to form requirements with business rules. It is a classifier that can be used to model complicated logic. In a DT, conditions are labeled as true (T) or false (F). Each column in the table represents a business logic rule that describes the unique combination of instances.
· Linear Regression (LR):
LR is a supervised learning algorithm. It predicts the results by creating a linear regression relationship between an independent variable (x) to predict a dependent variable value (y) [38].
· Gaussian Processes (GP):
GP is a distribution of probabilities of possible results. It is a collection of random variables represented by time or space, where there is a multivariate distribution for every group of those random variables [39].
· SMOreg:
SMOreg implements a vector machine for regression and applies multiple algorithms for parameter learning. The algorithm replaces the missing values and transforming the nominal attributes into binary ones [40].
· M5P:
M5P is a construction of the M5 algorithm, which can produce trees of regression models. M5P combines both conventional decision tree and linear regression functions at the nodes.

IV. EXPERIMENTAL RESULTS
In this investigation, the aforementioned eight ML algorithms were used across the Weka 3.8.3 platform to predict software defects. Cross-validation (10-fold) and percentage split (60%, 70%, 80%, and 90%) testing modes were used in the tested dataset. Table II shows the statistical metrics to evaluate the classifiers' error rates in predicting the selected dataset's software defects.
As shown in Table II, the LR algorithm achieved the highest correlation coefficient (R2) value in the KC1 dataset, followed by the SMOreg algorithm. On the other hand, the SMOreg algorithm achieved the lowest error rates for the remaining metrics. Therefore, the SMOreg classifier scored the best performance results among the eighth ML algorithms. In contrast, the ANN algorithm scored the worst performance results. Besides, the error rates for both metrics, RAE and RRSE, reached more than 100 %, where the algorithm was not able to predict the valid values because the values were constant for all the input data.


TABLE II. STATISTICAL PERFORMANCE RESULTS FOR THE ML ALGORITHMS USING 10 FOLDS CROSS-VALIDATION TESTING MODE

	CLASSIFI ER
	R2
	MAE
	RMSE
	RAE
	RRSE

	ANN
	0.1584
	6.9869
	14.7296
	115.6751
	134.899

	Random Forest (RF)
	
0.4995
	
4.4208
	
9.3905
	
73.1899
	
86.0011

	Random Tree (RT)
	0.1317
	5.5088
	12.2059
	91.2029
	111.7856

	Decision Table (DT)
	0.2663
	4.9232
	11.2294
	81.5082
	102.8431

	Linear regression (LR)
	
0.7594
	
6.5889
	
11.1759
	
109.0851
	
102.3526

	Gaussian Processes
(GP)
	
0.6794
	
4.6329
	
7.9437
	
76.7025
	
72.7514

	SMOreg
	0.7383
	4.3159
	7.4378
	73.1085
	68.1179

	M5P
	0.6989
	4.3618
	7.7834
	72.2135
	71.2835



The distribution graph of the actual and predicted values of the SMOreg classifier are shown in Fig. 2. The graph has two dimensions, where the dataset instance’s number is represented on the x-axis. On the other hand, the actual and predicted defect values are represented on the y-axis. Fig. 1 also showed that the predicted defects' values are almost the same as the actual defects’ values in most 145 instances. Therefore, the error rate of the performance metrics is decreased.


Fig. 2. The distribution of the predicted and actual defect values using the best classifier, SMOreg

Scored results of the eight ML algorithms using percentage split testing mode are shown in Table III. Different percentages for the training set and the testing set ranging from 60% to 90% were implemented. MAE statistical metric has been used as an evaluation metric for the assessment performance. We can conclude that as the percentage set is increased, the error rate will be decreased. The random forest (RF) algorithm achieved the lowest MAE error rate for both 60% and 70% training sets. On the other hand, the random tree (RT) algorithm achieved the lowest MAE error rate for both 80% and 90% training sets.


TABLE III. STATISTICAL PERFORMANCE RESULTS FOR ML ALGORITHMS USING PERCENTAGE SPLIT TESTING MODE

	CLASSIFIER
	60%
	70%
	80%
	90%

	ANN
	6.3554
	5.097
	5.7436
	0.8393

	Random Forest (RF)
	3.9995
	3.604
	1.9424
	0.2115

	Random Tree (RT)
	4.3654
	4.2973
	1.3014
	0.0303

	Decision Table (DT)
	6.2844
	5.5632
	2.5614
	2.5614

	Linear regression (LR)
	5.9445
	5.5295
	4.2484
	2.6998

	Gaussian	Processes (GP)
	5.1449
	5.0989
	3.4081
	1.9759

	SMOreg
	4.434
	3.9551
	2.7383
	1.1206

	M5P
	4.0811
	5.9991
	3.0258
	0.5304


V. CONCLUSION AND FUTURE WORK Software evolution is essential, so the software is
modified over time to adapt it to changing customer and market requirements. During software improvement, many software defects may arise. The software developer should update the test suites, such as adding new test cases to detect these new defects [41]. Software defect prediction is a necessary process that should be considered by the software developer before the software deployment. Software defect prediction can be implemented using ML-based prediction model. The model can use historical data for predicting future software defects [42]. This paper evaluated software defect prediction accuracy using different ML algorithms. Eight ML algorithms were used: ANN, RF, RT, DT, LR, GP, SMOreg, and M5P. The algorithms were applied on a publicly available dataset from the NASA promise repository, where different statistical measures were used to evaluate the error rates of the predicted values. The metrics are R², MAE, RMSE, RAE, and RRSE. According to the results, we can conclude that the ML algorithms are efficient techniques in predicting future software defects. First, a 10-fold cross- validation testing mode was used to measure the results. The results showed that the SMOreg algorithm, which implements a vector machine classification for regression and replacing the missing values, and normalizing all the attributes by default, has the best results among the other algorithms. In contrast, the RT algorithm achieved the lowest MAE error rate using percentage split testing mode for both (80% and 90%) training sets, respectively.

As future work, we may include the investigation of other ML classifiers and compare between them. Furthermore, we can use more datasets in the learning and prediction processes to increase prediction accuracy. We can also consider more practical software defect prediction scenarios, such as learning from software code with minimal defects.
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Abstract

—

 

Software development and the maintenance life

 

cycle are lengthy processes. However, the possibility of having

 

defects in the software can be high. Software reliability and

 

performance are essential measures of software success, which

 

affects user satisfaction and software cost. Predicting software

 

def

ects

 

using

 

machine

 

learning

 

(ML)

 

algorithms

 

is

 

one

 

approach

 

in

 

this direction. Implementing

 

this approach in

 

the earlier

 

stages

 

of

 

the

 

software

 

development

 

improves

 

software

 

performance quality and reduces software maintenance cost.

 

Different

 

models

 

and

 

techniques

 

have

 

been

 

implemented

 

in

 

many

 

studies

 

to

 

predict

 

software

 

defects.

 

This

 

investigation

 

implements ML algorithms, such as artificial neural networks

 

(ANNs), random forest (RF), random tree (RT), decision table

 

(DT),

 

linear

 

regression

 

(LR),

 

gaussia

n

 

processes

 

(GP),

 

SMOreg,

 

and M5P. A new software defect prediction model for software

 

future defect prediction is proposed. The defect prediction is

 

based

 

on

 

historical

 

data.

 

The

 

results

 

showed

 

that

 

a

 

combination

 

of ML algorithms could be used effectively to predict software

 

defects. The SMOreg classifier scored the best performance

 

results,

 

where

 

the

 

ANN

 

classifier

 

scores

 

the

 

worst

 

results.
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I.

 

I

NTRODUCTION

 

In the last few years, software quality became one of the

 

most

 

critical

 

aspects

 

of

 

the

 

software.

 

Software

 

defect

 

prediction is an essential part of the software development

 

cycle, and it can increase software quality, performance and

 

reduce

 

maintenance

 

costs.

 

Defective

 

software

 

directly

 

impacts software quality leading to higher software costs,

 

delayed project plans,

 

and higher maintenance costs. On the

 

other hand, applying a software defect prediction model on

 

the

 

software

 

before

 

its

 

deployment

 

improves

 

software

 

performance

 

and

 

increases

 

its

 

reliability

 

and

 

user

 

satisfaction.

 

In

 

this

 

study,

 

the

 

software

 

prediction

 

performance

 

was

 

assessed using eight machine learning (ML) algorithms. The

 

algorithms

 

include

 

artificial

 

neural

 

networks

 

(ANNs),

 

random forest (RF), random tree (RT), decision table (DT),

 

linear regression (LR), gaussian processes (GP), SMOreg,

 

and

 

M5P.

 

We

ka

 

3.8.3

 

tool

 

has

 

been

 

used

 

to

 

run

 

the

 

algorithms

 

using

 

the

 

k

-

fold

 

cross

-

validation

 

and

 

percentage

 

split

 

techniques. Dataset used in this work was obtained from a

 

publicly available repository from NASA Promise [1]. The

 

data set was validated using two tes

t modes: 10

-

fold cross

-

 

validation and percentage split with different training set

 

percentages (60%, 70%, 80%, 90%). Using the WEKA tool,

 

the

 

two

 

test

 

modes

 

applied

 

the

 

data

 

classification

 

on

 

the

 

eight

 

ML algorithms.

 

 

In

 

this

 

investigation,

 

different

 

evaluation

 

measures

 

will

 

be

 

used

 

to

 

assess

 

software

 

defect

 

prediction

 

accuracy.

 

According to the results of these measures, we can decide

 

which

 

ML

 

algorithms

 

we

 

can

 

use

 

for

 

software

 

defect

 

prediction.

 

The

 

evaluation

 

metrics

 

include

 

correlation

 

coefficient

 

(R²),

 

mean

 

absolute

 

error

 

(MAE),

 

root

 

mean

 

squared error (RMSE), relative absolute error (RAE), and

 

root

-

relative squared error (RRSE). The ML algorithm with

 

the lowest error rates can be considered the most appropriate

 

algorithm to

 

apply

 

in the prediction process.

 

The other sections of the paper are structured as follows:

 

the

 

literature

 

review

 

related

 

to

 

software

 

prediction

 

techniques

 

is

 

presented

 

in

 

Section

 

II;

 

background

 

knowledge

 

and

 

description of the used

 

Machine Learning algorithms a

re

 

discussed

 

in

 

Section

 

III;

 

the

 

dataset

 

with

 

evaluation

 

methodology

 

and

 

experimental

 

results

 

are

 

presented

 

in

 

Sections IV and V, respectively; the conclusion and future

 

work

 

are

 

discussed

 

in Section

 

VI.

 

II.

 

LITERATURE

 

REVIEW

 

Many studies used machine learning (ML) algorithms to

 

measure software defect prediction performance [2], [3], [4].

 

A

 

recent

 

study

 

analyzed

 

different

 

ML

 

algorithms’

 

performance

 

in

 

software

 

defect

 

prediction.

 

The

 

ML

 

algorithms

 

used

 

are

 

NB,

 

MLP,

 

RBF,

 

SVM,

 

KN

N,

 

K*,

 

OneR,

 

PART, DTree, and RF [3]. The researchers of this study

 

implemented the ML algorithms on 12 publicly available

 

NASA

 

datasets.

 

This

 

study

 

evaluated

 

the

 

results

 

using

 

various

 

measures,

 

like

 

accuracy,

 

recall,

 

precision,

 

F

-

measure,

 

ROC area, and MCC. Another study proposed a software

 

defect prediction model based on a neural network using a

 

levenberg

-

Marquardt (LM) algorithm [4]. In this study, the

 

proposed

 

model

 

is compared

 

with

 

the

 

polynomial

 

neural

 

network, and they found that the

 

proposed model has higher

 

accuracy results. M. Ahmad 

et al. 

reviewed different ML

 

algorithms,

 

lexicon

-

based

 

techniques,

 

and

 

hybrid

 

techniques,

 

which combines ML algorithms and lexicon technique for

 

automatic

 

sentiment

 

classification

 

for

 

user

-

generated

 

dat

a

 

from various social media and blogging websites [5]. Arora

 

et

 

al.

 

proposed

 

a

 

software

 

defect

 

prediction

 

model.

 

The

 

proposed model is comparing two ML classifiers, which are

 

ANN

 

and

 

SVM

 

[6].

 

The

 

study

 

performed

 

using

 

seven

 

datasets

 

from

 

the

 

PROMISE

 

repository

 

and

 

assessed

 

the

 

results

 

on

 

various

 

measures

 

using

 

accuracy,

 

recall,

 

and

 

specificity.

 

The

 

SVM

 

is

 

better

 

than

 

ANN

 

when

 

evaluating

 

the

 

recall measure results. Alsaeedi and Mustafa compared SVM,

 

DTree,

 

and

 

RF

 

classifiers

 

on

 

ten

 

publicly

 

available

 

NASA

 

 

