Deciphering Patterns in a small scale Case Analysis Study of the Apriori Algorithm in Market Basket Analysis using machine learning tools
- Version
- Download 81
- File Size 1.03 MB
- File Count 1
- Create Date 6 May 2024
- Last Updated 6 May 2024
Deciphering Patterns in a small scale Case Analysis Study of the Apriori Algorithm in Market Basket Analysis using machine learning tools
Dr R.Naveenkumar, Associate Professor, Department of Computer Science and Engineering, Brainware University, Kolkata, West Bengal, E-Mail: rnaveenkumarooty@gmail.com
Md Aisaifi, Department of Computer Science and Engineering, Brainware University, Kolkata, West Bengal.
Abstract:
Analysis of Transaction Database Using Apriori Algorithm. This study examines the use of the Apriori algorithm for analysing transaction databases. The Apriori algorithm is a fundamental technique in data mining that allows for the efficient discovery of frequent patterns and association rules in large datasets. The Apriori algorithm employs a two-step approach. Initially, it identifies frequent items in the database based on a user-defined minimum support threshold. Subsequently, it generates association rules that describe relationships between these frequent items based on metrics such as confidence and lift. This paper provides an in-depth explanation of the Apriori algorithm, emphasizing its strengths and limitations. Additionally, it presents various applications of the Apriori algorithm in real-world scenarios, such as shopping cart analysis, cross-selling and upselling, and customer segmentation. The significance of this study lies in its comprehensive analysis of the Apriori algorithm and its practical relevance in diverse data mining tasks. It serves as a valuable resource for researchers, practitioners, and anyone seeking to understand the fundamentals and applications of association rule mining.
Keywords: Datamining, OLTP, Apriori algorithm, Item sets and Market Basket Analysis
Download